scholarly journals OPTIMIZED MAXIMUM LOADABILITY OF POWER SYSTEMS USING AN ENHANCED DYNAMIC JAYA ALGORITHM

Author(s):  
Ibrahim A. Farhat ◽  
Abdullah O. Hawal
Keyword(s):  
Author(s):  
Adel A. Abou El Ela ◽  
Ragab A. El-Sehiemy ◽  
Abdullah M. Shaheen ◽  
Abd El Galil Diab

Modern multi-area power systems are in persistent facing to imbalances in power generation and consumption which directly causes frequency and tie-line power fluctuations in each area. This paper deals with the load frequency control (LFC) problem where the control objective of regulating their error signals despite the presences of several external load disturbances. It proposes an optimal design of proportional integral derivative controller (PID) based on a novel version of Jaya algorithm called self-adaptive multi-population elitist (SAMPE) Jaya optimizer. A filter with derivative term is integrated with PID controller to alleviate the impact of noise in the input signal. A time domain based-objective functions are investigated such as integral time-multiplied absolute value of the error (ITAE) and integral of absolute error (IAE). Both SAMPE-Jaya and Jaya optimizers are employed to optimally tune the PID parameters for interconnected power systems comprising two non-reheat thermal areas. Three test cases are performed with various load disturbances in both areas individually and simultaneaously. Also, the practical physical constraints related to generation rate constraint (GRC) with its nonlinearity characteristics are taken into account. In addition, the obtained results using the designed PID controller based on SAMPE-Jaya are compared with various reported techniques. These simulated comparisons declare the great efficiency and the high superiority of the designed PID controller based on SAMPE-Jaya.


Author(s):  
Anil Annamraju ◽  
Srikanth Nandiraju

AbstractIn renewable penetrated power systems, frequency instability arises due to the volatile nature of renewable energy sources (RES) and load disturbances. The traditional load frequency control (LFC) strategy from conventional power sources (CPS) alone unable to control the frequency deviations caused by the aforementioned disturbances. Therefore, it is essential to modify the structure of LFC, to handle the disturbances caused by the RES and load. With regards to the above problem, this work proposes a novel coordinated LFC strategy with modified control signal to have Plug-in Hybrid Electric Vehicles (PHEVs) for frequency stability enhancement of the Japanese power system. Where, the coordinated control strategy is based on the PID controller, which is optimally tuned by the recently developed JAYA Algorithm (JA). Numerous simulations are performed with the proposed methodology and, the results have confirmed the effectiveness of a proposed approach over some recent and well-known techniques in literature. Furthermore, simulation results reveal that the proposed coordinated approach significantly minimizing the frequency deviations compared to the JAYA optimized LFC without PHEVs & with PHEVs but no coordination.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jianhong Pan ◽  
Jiashu Fan ◽  
Aidi Dong ◽  
Yang Li

A novel transient stability assessment (TSA) approach using random vector functional link (RVFL) network optimized by Jaya algorithm, called Jaya-RVFL, is proposed for power systems in this paper. First, by extracting system-level features from phasor measurement unit (PMU) measurements as predictors, an RVFL-based TSA model is proposed. In order to improve the performance of RVFL classifiers, a quantile scaling approach is utilized to optimize the randomization range of input weights via the Jaya algorithm. The simulation results on IEEE 39-bus system and a real-world power system show that the presented method outperforms other popular methods comprising multilayer perception, probabilistic neural network, and support vector machine.


Author(s):  
Asmaa F. Barakat ◽  
Ragab A. El-Sehiemy ◽  
Mohamed Elsaid ◽  
E. Osman

This paper proposes a new optimization algorithm called JAYA algorithm for solving the optimal reactive power dispatch (ORPD) problem. Minimizing the real power losses is one of main objective functions of (ORPD) problem. The ORPD problem is subjected to non-linear equality and inequality operational constraints. The proposed JAYA is a recently developed optimization algorithm. The main merit of Jaya algorithm is that the algorithm performance is liberated of specific control parameters adjustment. Therefore, it overcomes the limitations of previous optimization algorithms in terms of achieving the global optima atless computational efforts. The effectiveness of the proposed Jaya algorithm is proven on three standard systems namely IEEE 14-bus, 30-bus and 118-bus test systems. Added to that, Jaya is successively tested on the West Delta Real Network (WDRN) as a real part of the Egyptian grid. The obtained simulation results prove that the proposed JAYA algorithm has significant reduction in power losses for the tested system compared with other optimization algorithms. The obtained results confirm that the proposed JAYA optimization algorithm can make a noticeable enhancement on solving the ORPD problem for small and large-scale power systems.


2003 ◽  
Vol 150 (1) ◽  
pp. 23 ◽  
Author(s):  
B. Lee ◽  
H. Song ◽  
S.-H. Kwon ◽  
D. Kim ◽  
K. Iba ◽  
...  

2001 ◽  
Author(s):  
J. Schlabbach ◽  
D. Blume ◽  
T. Stephanblome

Sign in / Sign up

Export Citation Format

Share Document