scholarly journals CONTROL OF THE TWO DoF INVERTED PENDULUM

2014 ◽  
Vol 4 (2) ◽  
Author(s):  
M. Fajar

This paper describes how to simulate and control the two DoF inverted pendulum system, a dynamics of multibody system. The control strategy used is based on the conventional feedback method for the stabilisation of the two DoF inverted pendulum system. Simulation study has been done shows that conventional method i.e. pole placement control strategy is capable to control multi input and multi output of the two DoF inverted pendulum system successfully. The result shows that pole placement control strategy gives satisfactory response that is presented in time domain.

2013 ◽  
Vol 391 ◽  
pp. 163-167 ◽  
Author(s):  
M. Fajar ◽  
S.S. Douglas ◽  
J.B. Gomm

This paper describes how to simulate the spherical inverted pendulum, a dynamics of multibody system, with SimMechanics. The control strategy used is based on the LQR feedback method for the stabilisation of the spherical inverted pendulum system. Simulation study has been done in Simulink environment shows that LQR controller is capable to control multi input and multi output of spherical inverted pendulum system successfully. The result shows that LQR control strategy gives satisfactory response that is presented in time domain with the details analysis. The use of SimMechanics for simulation of spherical inverted pendulum has some advantages i.e. not need to derive equations of motion, available visualisation tools, fast and easy design


2021 ◽  
pp. 107754632110429
Author(s):  
Pouriya Pourgholam ◽  
Hamid Moeenfard

Accurate modeling and efficient control of inverted pendulums have always been a challenge for researchers. So, the current research aims to achieve the following objectives: (I) proposing a comprehensive dynamic model for the inverted pendulums which accounts for the flexibility of the pendulum bar and (II) suggesting an appropriate supervisory fuzzy-pole placement control strategy for stabilizing the pendulum system. Using a Lagrangian formulation, the equations of motion are derived and linearized. Then, a state feedback controller with a reduced-order observer is designed to stabilize the system. Closed-loop simulations reveal that at least six modes shall be considered in the dynamic equations. To improve the quality of the transient response, a novel fuzzy system is developed for real-time assignment of the controller poles. Simulation results demonstrate that the control quality is significantly improved by adding a supervisory fuzzy system to the control loop. The developed approach for dynamic modeling of the system, and the idea of multi-level fuzzy-pole placement control architecture developed in this paper, may be successfully applied to improve the response specifications in other dynamic systems.


2020 ◽  
Vol 71 (2) ◽  
pp. 122-126
Author(s):  
Ahmed Alkamachi

AbstractA single inverted pendulum on a cart (SIPC) is designed and modeled physically using SolidWorks. The model is then exported to the Simulink environment to form a Simscape model for simulation and test purposes. This type of modeling uses a physical grid tactic to model mechanical structures. It requires connection of the physical elements with physical signal converter to define the implicit system dynamics to be modeled. The integration between the SolidWorks and Simscape eliminates the need of deriving the mathematical model and provides a platform for the rapid controller design for the system. State feedback control scheme is proposed, designed, and tuned aiming to maintain the pendulum in the upright place while tracking the desired cart position. Several simulation cases are studied to prove the controller abilities. In order to examine the controller robustness, disturbance rejection and noise attenuation capabilities are also discovered.


Sign in / Sign up

Export Citation Format

Share Document