scholarly journals KAJIAN KEINJEKTIFAN MODUL (MODUL INJEKTIF, MODUL INJEKTIF LEMAH, MODUL MININJEKTIF)

2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Baidowi Baidowi1 ◽  
Yunita Septriana Anwar

Abstrak. Diberikan  adalah -modul. Modul  dikatakan injektif jika untuk setiap monomorfisma   dan setiap homomorfisma  terdapat homomorfisma   sedemikian hingga . Modul  dikatakan injektif-lemah jika  adalah  -injektif lemah untuk setiap modul    yang dibangun berhingga. Sedangkan  dikatakan mininjektif jika untuk setiap homomorfisma dari  dengan  ideal sederhana dari , terdapat homomorfisma  sedemikian hingga . Kajian keinjektifan dalam tulisan ini meliputi modul injektif, modul injektif-lemah, dan modul mininjektif yang mengkaji karakterisasi dari masing-masing modul. Khusunya ketiganya memiliki karakterisasi yang khusus pada jumlahan tak berhingganya.Kata Kunci : Modul injektif, modul injektif-lemah, modul mininjektifAbstract. Let  be an -module. An -module  is called injective if for any monomrphism  and for any homomorphism  there exists a homomorphism  such that . We say that an -module  is weakly-injective if  is weakly -injective for every finitely generated module . An -module  is called mininjective if every homomorphism , there exists a homomorphism  such that , with  is simple ideal of . In this paper, we give some characterizations and properties of injective modules, weakly-injective modules, and mininjective modules. In particular, they have different characterizations for their infinite direct sum.Keywords : Injective modules, weakly-injective modules, mininjective modules

1992 ◽  
Vol 34 (3) ◽  
pp. 349-353 ◽  
Author(s):  
Sergio R. López-Permouth

The notation in this paper will be standard and it may be found in [2] or [8]. Throughout the paper, the notation A ⊂' B will mean that A is an essential submodule of the module B. Given an arbitrary ring R and R-modules M and N, we say that M is weakly N-injective if and only if every map φ:N → E(M) from N into the injective hull E(M) of M may be written as a composition σ〫 , where :N→M and σ:M→E(M) is a monomorphism. This is equivalent to saying that for every map φ:N→E(M), there exists a submodule X of E(M), isomorphic to M, such that φ(N) is contained in X. In particular, M is weakly R-injective if and only if, for every x ∈ E(M), there exists X ⊂ E(M) such that x ∈ X ≌ M. We say that M is weakly-injective if and only if it is weakly N-innjective for every finitely generated module N. Clearly, M is weakly-injective if and only if, for every finitely generated submodule N of E(M), there exists X ⊂ E(M) such that N ⊂ X ≌ M.


2016 ◽  
Vol 60 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Ferran Cedó ◽  
Jan Okniński

AbstractWe show that every finitely generated algebra that is a finitely generated module over a finitely generated commutative subalgebra is an automaton algebra in the sense of Ufnarovskii.


2016 ◽  
Vol 23 (04) ◽  
pp. 701-720 ◽  
Author(s):  
Xiangui Zhao ◽  
Yang Zhang

Differential difference algebras are generalizations of polynomial algebras, quantum planes, and Ore extensions of automorphism type and of derivation type. In this paper, we investigate the Gelfand-Kirillov dimension of a finitely generated module over a differential difference algebra through a computational method: Gröbner-Shirshov basis method. We develop the Gröbner-Shirshov basis theory of differential difference algebras, and of finitely generated modules over differential difference algebras, respectively. Then, via Gröbner-Shirshov bases, we give algorithms for computing the Gelfand-Kirillov dimensions of cyclic modules and finitely generated modules over differential difference algebras.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950035 ◽  
Author(s):  
M. Behboodi ◽  
Z. Fazelpour

We define prime uniserial modules as a generalization of uniserial modules. We say that an [Formula: see text]-module [Formula: see text] is prime uniserial ([Formula: see text]-uniserial) if its prime submodules are linearly ordered by inclusion, and we say that [Formula: see text] is prime serial ([Formula: see text]-serial) if it is a direct sum of [Formula: see text]-uniserial modules. The goal of this paper is to study [Formula: see text]-serial modules over commutative rings. First, we study the structure [Formula: see text]-serial modules over almost perfect domains and then we determine the structure of [Formula: see text]-serial modules over Dedekind domains. Moreover, we discuss the following natural questions: “Which rings have the property that every module is [Formula: see text]-serial?” and “Which rings have the property that every finitely generated module is [Formula: see text]-serial?”.


2012 ◽  
Vol 19 (spec01) ◽  
pp. 1161-1166
Author(s):  
Parviz Sahandi ◽  
Tirdad Sharif ◽  
Siamak Yassemi

Any finitely generated module M over a local ring R is endowed with a complete intersection dimension CI-dim RM and a Gorenstein dimension G-dim RM. The Gorenstein dimension can be extended to all modules over the ring R. This paper presents a similar extension for the complete intersection dimension, and mentions the relation between this dimension and the Gorenstein flat dimension. In addition, we show that in the intersection theorem, the flat dimension can be replaced by the complete intersection flat dimension.


Author(s):  
David A. Hill

AbstractA module is uniserial if its lattice of submodules is linearly ordered, and a ring R is left serial if R is a direct sum of uniserial left ideals. The following problem is considered. Suppose the injective hull of each simple left R-module is uniserial. When does this imply that the indecomposable injective left R-modules are uniserial? An affirmative answer is known when R is commutative and when R is Artinian. The following result is proved.Let R be a left serial ring and suppose that for each primitive idempotent e, eRe has indecomposable injective left modules uniserial. The following conditions are equivalent. (a) The injective hull of each simple left R-module is uniserial. (b) Every indecomposable injective left R-module is univerial. (c) Every finitely generated left R-module is serial.The rest of the paper is devoted to a study of some non-Artinian serial rings which serve to illustrate this theorem.


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


2015 ◽  
Vol 219 ◽  
pp. 113-125
Author(s):  
Olgur Celikbas ◽  
Srikanth B. Iyengar ◽  
Greg Piepmeyer ◽  
Roger Wiegand

AbstractTensor products usually have nonzero torsion. This is a central theme of Auslander's 1961 paper; the theme continues in the work of Huneke and Wiegand in the 1990s. The main focus in this article is on tensor powers of a finitely generated module over a local ring. Also, we study torsion-free modulesNwith the property thatM ⊗RNhas nonzero torsion unlessMis very special. An important example of such a moduleNis the Frobenius powerpeRover a complete intersection domainRof characteristicp> 0.


Sign in / Sign up

Export Citation Format

Share Document