"Optimization of Plant Geometry and NPK Levels for Seed and Fibre Yield Maximization in Sunnhemp [Crotalaria juncea (L.)] Genotypes"

2018 ◽  
Vol 105 (4-6) ◽  
pp. 156 ◽  
Author(s):  
S. Kavin ◽  
K. Subrahmaniyan ◽  
S. Kumari Mannan
2011 ◽  
Vol 59 (1) ◽  
pp. 87-102 ◽  
Author(s):  
S. Sood ◽  
N. Kalia ◽  
S. Bhateria

Combining ability and heterosis were calculated for fourteen lines of linseed in a line × tester mating design using twelve lines and two diverse testers in two different environments. The hybrids and parental lines were raised in a completely randomized block design with three replications to investigate seed and fibre yield and their component traits. Genetic variation was significant for most of the traits over environments. Combining ability studies revealed that the lines KL-221 and LCK-9826 were good general combiners for seed yield and most of its components, whereas LMH-62 and LC-2323 were good general combiners for yield components only. Moreover, KL-221 was also a good general combiner for fibre yield. Similarly, B-509 and Ariane were good general combiners for fibre yield and most of its components. Among the specific cross combinations, B-509 × Flak-1 was outstanding for seed yield per plant and B-509 × KL-187 and LC-2323 × LCK-9826 for fibre yield per plant, with high SCA effects. In general, the hybrids excelled their respective parents and the standard checks for most of the characters studied. Based on the comparison of mean performance, SCA effects and the extent of heterosis, the hybrids LC-2323 × LCK-9826 and B-509 × KL-221 appeared to be the most promising for both seed and fibre yield. Other promising combinations were LC-2323 × KL-210 and B-509 × Ariane for seed and fibre yield, respectively. The superiority of LC-2323, LCK-9826, KL-221, B-509 and Ariane as good general combiners was further confirmed by the involvement of these parents in the desirable cross combinations.


2021 ◽  
Vol 146 ◽  
pp. 105975
Author(s):  
Andrea Parenti ◽  
Giovanni Cappelli ◽  
Walter Zegada-Lizarazu ◽  
Carlos Martín Sastre ◽  
Myrsini Christou ◽  
...  

2012 ◽  
Vol 60 (14) ◽  
pp. 3541-3550 ◽  
Author(s):  
Steven M. Colegate ◽  
Dale R. Gardner ◽  
Robert J. Joy ◽  
Joseph M. Betz ◽  
Kip E. Panter
Keyword(s):  

Author(s):  
Russell R. Barton ◽  
Kwok-Leung Tsui

Abstract A product contributes to yield if all of its performance functions fall within their upper and/or lower limits. For example, a piston connecting rod may be required to provide rigidity along several axes. The actual connecting rod deflection will vary, depending on variations in the materials and forging conditions, but the deflection must remain less than an upper limit. Designing for maximum yield for multivariate performance limits is a difficult task. Direct optimization may require excessive computing resources. We discuss two efficient methods for yield improvement: ‘performance centering’ and a method based on Taguchi’s ‘parameter design’ philosophy. Both are shown to be motivated by the Chebychev inequality. It is important to remember that these are approximate methods. An example shows that they may produce sub-optimal yield, even when the random components of the performance functions are independent and identically distributed.


2020 ◽  
Vol 18 (1) ◽  
pp. 50-56
Author(s):  
S.O. Olanipekun ◽  
A.O. Togun ◽  
S.A. Adejumo ◽  
O.N. Adeniyan ◽  
A.K. Adebayo

Kenaf is a multi-purpose crop with numerous industrial uses. Its production is constrained by poor cultural and agronomic practices which reduce yield. Inappropriate spacing among others could result in low yield. Effect of plant spacing on growth and yield of kenaf was investigated in Ibadan, Nigeria. Kenaf seed was sown (2 plants/stand) at three plant spacing: 50×15, 50×20, 50×25 cm was assessed for seed and bast fibre yields using randomized complete block design (RCBD) with three replicates. The analysis was done using statistical analysis system (SAS). Plant spacing differed significantly for bast fibre and seed yields. Highest bast fibre yield (0.9±0.03) and seed yield (0.5±0.01) were obtained at 50×20 cm and 50×25 cm spacing, respectively, while the lowest bast fibre yield (0.7±0.01) and seed yield (0.3±0.01) were obtained at 50×15 cm spacing. Spacing of 50 × 15 cm and 50 × 20 cm are appropriate when planting for fibre while 50 × 25cm is appropriate for seed production. Keywords: Kenaf, Spacing, Fibre and Seed yield.


Sign in / Sign up

Export Citation Format

Share Document