scholarly journals Immobilization of Cellulase Enzyme on Zinc Ferrite Nanoparticles in Increasing Enzymatic Hydrolysis on Ultrasound-Assisted Alkaline Pretreated Crotalaria Juncea Biomass

2017 ◽  
Vol 10 (24) ◽  
pp. 1-7 ◽  
Author(s):  
P. Manasa ◽  
Paramjeet Saroj ◽  
Narasimhulu Korrapati ◽  
◽  
◽  
...  
2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


2021 ◽  
Vol 588 ◽  
pp. 346-356
Author(s):  
Shouchun Bao ◽  
Qingke Tan ◽  
Xiangli Kong ◽  
Can Wang ◽  
Yiyu Chen ◽  
...  

2012 ◽  
Vol 48 (11) ◽  
pp. 3630-3633 ◽  
Author(s):  
G. Thirupathi ◽  
R. Singh

2010 ◽  
Vol 9 ◽  
pp. 20-23 ◽  
Author(s):  
Ashok Kumar ◽  
Annveer ◽  
Manju Arora ◽  
M.S. Yadav ◽  
R.P. Panta

Author(s):  
Yohanita Restu Widihastuty ◽  
Sutini Sutini ◽  
Aida Nur Ramadhani

Pineapple leaf waste is one agricultural waste that has high cellulose content. Pineapple leaf waste's complex structure contains a bundle of packed fiber that makes it hard to remove lignin and hemicellulose structure, so challenging to produce reducing sugar. Dried pineapple leaf waste pretreated with a grinder to break its complex structure. Delignification process using 2% w/v NaOH solution at 87oC for 60 minutes has been carried out to remove lignin and hemicellulose structure so reducing sugar could be produced. Delignified pineapple leaf waste has been enzymatic hydrolyzed using cellulase enzyme (6 mL, 7 mL, and 8 mL) to produce reducing sugar. The sample was incubated in an incubator shaker at 155 rpm at 45, 55, and 60oC for 72 hours. Determination of reducing sugar yield had been carried out using the Dubois method and HPLC. The model indicated that the optimum operating condition of enzymatic hydrolysis is 7 mL of cellulase enzyme at 55oC to produce 96,673 mg/L reducing sugar. This result indicated that the enzymatic hydrolysis operating condition improved the reducing sugar yield from pineapple leaf waste. The optimum reducing sugar yield can produce biofuel by the saccharification process.


Sign in / Sign up

Export Citation Format

Share Document