scholarly journals On Commutativity of Prime Rings with Symmetric Left θ-3- Centralizers

2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Ikram Saed

Let R be an associative ring with center Z(R) , I be a nonzero ideal of R and  be an automorphism  of R . An 3-additive mapping M:RxRxR R is called a symmetric left -3-centralizer if M(u1y,u2 ,u3)=M(u1,u2,u3)(y) holds for all  y, u1, u2, u3 R . In this paper , we shall investigate the  commutativity of prime rings admitting symmetric left -3-centralizer satisfying any one of the following conditions : (i)M([u ,y], u2, u3)  [(u), (y)] = 0 (ii)M((u ∘ y), u2, u3)  ((u) ∘ (y)) = 0 (iii)M(u2, u2, u3)  (u2) = 0 (iv) M(uy, u2, u3)  (uy) = 0 (v) M(uy, u2, u3)  (uy) For all u2,u3 R and u ,y I

1988 ◽  
Vol 31 (4) ◽  
pp. 500-508 ◽  
Author(s):  
H. E. Bell ◽  
W. S. Martindale

AbstractA semiderivation of a ring R is an additive mapping f:R → R together with a function g:R → R such that f(xy) = f(x)g(y) + xf(y) = f(x)y + g(x)f(y) and f(g(x) ) = g(f(x)) for all x, y ∊ R. Motivating examples are derivations and mappings of the form x → x — g(x), g a ring endomorphism. A semiderivation f of R is centralizing on an ideal U if [f(u), u] is central for all u ∊ U. For R prime of char. ≠2, U a nonzero ideal of R, and 0 ≠ f a semiderivation of R we prove: (1) if f is centralizing on U then either R is commutative or f is essentially one of the motivating examples, (2) if [f(U), f(U) ] is central then R is commutative.


2012 ◽  
Vol 31 ◽  
pp. 65-70
Author(s):  
Kalyan Kumar Dey ◽  
Akhil Chandra Paul

Let M be a prime ?-ring satisfying a certain assumption (*). An additive mapping f : M ? M is a semi-derivation if f(x?y) = f(x)?g(y) + x?f(y) = f(x)?y + g(x)?f(y) and f(g(x)) = g(f(x)) for all x, y?M and ? ? ?, where g : M?M is an associated function. In this paper, we generalize some properties of prime rings with semi-derivations to the prime &Gamma-rings with semi-derivations. 2000 AMS Subject Classifications: 16A70, 16A72, 16A10.DOI: http://dx.doi.org/10.3329/ganit.v31i0.10309GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 65-70


Author(s):  
Deepak Kumar ◽  
Bharat Bhushan ◽  
Gurninder S. Sandhu

Let [Formula: see text] be a prime ring with involution ∗ of the second kind. An additive mapping [Formula: see text] is called generalized derivation if there exists a unique derivation [Formula: see text] such that [Formula: see text] for all [Formula: see text] In this paper, we investigate the structure of [Formula: see text] and describe the possible forms of generalized derivations of [Formula: see text] that satisfy specific ∗-differential identities. Precisely, we study the following situations: (i) [Formula: see text] (ii) [Formula: see text] (iii) [Formula: see text] (iv) [Formula: see text] for all [Formula: see text] Moreover, we construct some examples showing that the restrictions imposed in the hypotheses of our theorems are not redundant.


2014 ◽  
Vol 33 (2) ◽  
pp. 179-186
Author(s):  
Öznur Gölbaşı ◽  
Onur Ağırtıcı

Let R be a ∗-prime ring with involution ∗ and center Z(R). An additive mapping F:R→R is called a semiderivation if there exists a function g:R→R such that (i) F(xy)=F(x)g(y)+xF(y)=F(x)y+g(x)F(y) and (ii) F(g(x))=g(F(x)) hold for all x,y∈R. In the present paper, some well known results concerning derivations of prime rings are extended to semiderivations of ∗-prime rings.


ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Basudeb Dhara ◽  
Atanu Pattanayak

Let be a semiprime ring, a nonzero ideal of , and , two epimorphisms of . An additive mapping is generalized -derivation on if there exists a -derivation such that holds for all . In this paper, it is shown that if , then contains a nonzero central ideal of , if one of the following holds: (i) ; (ii) ; (iii) ; (iv) ; (v) for all .


1991 ◽  
Vol 44 (3) ◽  
pp. 353-355 ◽  
Author(s):  
Weimin Xue

An associative ring is called strongly right (left) bounded if every nonzero right (left) ideal contains a nonzero ideal. We prove that if R is a strongly right bounded finite ring with unity and the order |R| of R has no factors of the form p5, then R is strongly left bounded. This answers a question of Birkenmeier and Tucci.


2017 ◽  
Vol 36 ◽  
pp. 1-5
Author(s):  
Akhil Chandra Paul ◽  
Md Mizanor Rahman

In this paper we prove that, if U is a s-square closed Lie ideal of a 2-torsion free s-prime ring R and  d: R(R is an additive mapping satisfying d(u2)=d(u)u+ud(u) for all u?U then d(uv)=d(u)v+ud(v) holds for all  u,v?UGANIT J. Bangladesh Math. Soc.Vol. 36 (2016) 1-5


Author(s):  
Peter V. Danchev ◽  
Tsiu-Kwen Lee

Let [Formula: see text] be an associative ring. Given a positive integer [Formula: see text], for [Formula: see text] we define [Formula: see text], the [Formula: see text]-generalized commutator of [Formula: see text]. By an [Formula: see text]-generalized Lie ideal of [Formula: see text] (at the [Formula: see text]th position with [Formula: see text]) we mean an additive subgroup [Formula: see text] of [Formula: see text] satisfying [Formula: see text] for all [Formula: see text] and all [Formula: see text], where [Formula: see text]. In the paper, we study [Formula: see text]-generalized commutators of rings and prove that if [Formula: see text] is a noncommutative prime ring and [Formula: see text], then every nonzero [Formula: see text]-generalized Lie ideal of [Formula: see text] contains a nonzero ideal. Therefore, if [Formula: see text] is a noncommutative simple ring, then [Formula: see text]. This extends a classical result due to Herstein [Generalized commutators in rings, Portugal. Math. 13 (1954) 137–139]. Some generalizations and related questions on [Formula: see text]-generalized commutators and their relationship with noncommutative polynomials are also discussed.


ISRN Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Vincenzo De Filippis ◽  
Abdellah Mamouni ◽  
Lahcen Oukhtite

Let be a ring. An additive mapping is called semiderivation of if there exists an endomorphism of such that and , for all in . Here we prove that if is a 2-torsion free -prime ring and a nonzero -Jordan ideal of such that for all , then either is commutative or for all . Moreover, we initiate the study of generalized semiderivations in prime rings.


2006 ◽  
Vol 13 (03) ◽  
pp. 371-380 ◽  
Author(s):  
Nurcan Argaç

Let R be a ring and S a nonempty subset of R. A mapping f: R → R is called commuting on S if [f(x),x] = 0 for all x ∈ S. In this paper, firstly, we generalize the well-known result of Posner related to commuting derivations on prime rings. Secondly, we show that if R is a semiprime ring and I is a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) For all x, y ∈ I, either d([x,y]) = [x,y] or d([x,y]) = -[x,y]. (ii) For all x, y ∈ I, either d(x ◦ y) = x ◦ y or d(x ◦ y) = -(x ◦ y). (iii) R is 2-torsion free, and for all x, y ∈ I, either [d(x),d(y)] = d([x,y]) or [d(x),d(y)] = d([y,x]). Furthermore, if d(I) ≠ {0}, then R has a nonzero central ideal. Finally, we introduce the notation of generalized biderivation and prove that every generalized biderivation on a noncommutative prime ring is a biderivation.


Sign in / Sign up

Export Citation Format

Share Document