ring endomorphism
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 1 (9) ◽  
pp. 1-18
Author(s):  
Chenar Abdul Kareem Ahmed ◽  
Renas Tahsin M. Salim
Keyword(s):  

Author(s):  
Kamal Paykan ◽  
Abdolreza Tehranchi

For a ring endomorphism [Formula: see text], a generalization of semiprime rings and right p.q.-Baer rings, which we call quasi-Armendariz rings of skew Hurwitz series type (or simply, [Formula: see text]-[Formula: see text]), is introduced and studied. It is shown that the [Formula: see text]-rings are closed upper triangular matrix rings, full matrix rings and Morita invariance. Some characterizations for the skew Hurwitz series ring [Formula: see text] to be quasi-Baer, generalized quasi-Baer, primary, nilary, reflexive, ideal-symmetric and semiprime are concluded.


2014 ◽  
Vol 07 (03) ◽  
pp. 1450036 ◽  
Author(s):  
M. Ahmadi ◽  
A. Moussavi ◽  
V. Nourozi

For a ring endomorphism α, we introduce and investigate skew Hurwitz serieswise Armendariz (or SHA) rings which are a generalization of α-rigid rings and determine the radicals of the skew Hurwitz series ring (HR, α), in terms of those of R. We prove that several properties transfer between R and the extensions, in case R is an SHA-ring. We also construct various types of nonreduced SHA-rings.


2013 ◽  
Vol 41 (9) ◽  
pp. 3465-3475 ◽  
Author(s):  
Liang Zhao ◽  
Xiaoguang Yan
Keyword(s):  

2006 ◽  
Vol 13 (02) ◽  
pp. 253-266 ◽  
Author(s):  
Chan Yong Hong ◽  
Tai Keun Kwak ◽  
S. Tariq Rizvi

A ring R is called Armendariz if whenever the product of any two polynomials in R[x] over R is zero, then so is the product of any pair of coefficients from the two polynomials. Such rings have been extensively studied in literature. For a ring endomorphism α, we introduce the notion of α-Armendariz rings by considering the polynomials in the skew polynomial ring R[x; α] in place of the ring R[x]. A number of properties of this generalization are established, and connections of properties of an α-Armendariz ring R with those of the ring R[x; α] are investigated. In particular, among other results, we show that there is a strong connection of the Baer property and the p.p.-property (principal ideals are projective) of the two rings, respectively. Several known results follow as consequences of our results.


1992 ◽  
Vol 45 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Manfred Dugas ◽  
Jutta Hausen ◽  
Johnny A. Johnson

A ring R is said to be an AE-ring if every endomorphism of its additive group R+ is a ring endomorphism. Clearly, the zero ring on any abelian group is an AE-ring. In a recent article, Birkenmeier and Heatherly characterised the so-called standard AE-lings, that is, the non-trivial AE-rings whose maximal 2-subgroup is a direct summand. The present article demonstrates the existence of non-standard AE-rings. Four questions posed by Birkenmeier and Heatherly are answered in the negative.


Author(s):  
Gary Birenmeier ◽  
Henry Heatherly

AbstractThis paper considers (left) near-rings which satisfy the left self distributive (LSD) identity: abc = abac. This is exactly the class of near-rings for which each left multiplication mapping, τa: x → ax, is a near-ring endomorphism. Simple and subdirectly irreducible ones are classified and semidirect sum decompositions into reduced and nilpotent pieces are given. LSD near-rings with restrictive conditions on nilpotent elements or annihilating sets are considered. Type 1 prime (semiprime) ideals in an LSD near-ring are completely prime (semiprime). Further results on prime and maximal ideals are given. Numerous examples are given to illuminate the theory and to illustrate its limitations. Some analogous theory for right self distributive near-rings is given (those satisfying the identity: abc = acbc).


1990 ◽  
Vol 42 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Gary Birkenmeier ◽  
Henry Heatherly

A ring R is said to be an AE-ring if every additive endomorphism is a ring endomorphism. In this paper further steps are made toward solving Sullivan's Problem of characterising these rings. The classification of AE-rings with. R3 ≠ 0 is completed. Complete characterisations are given for AE-rings which are either: (i) subdirectly irreducible, (ii) algebras over fields, or (iii) additively indecomposable. Substantial progress is made in classifying AE-rings which are mixed – the last open case – by imposing various finiteness conditions (chain conditions on special ideals, height restricting conditions). Several open questions are posed.


1989 ◽  
Vol 32 (4) ◽  
pp. 486-489 ◽  
Author(s):  
Klaus Hoechsmann

AbstractIf A is a finite abelian group and ZA its integral group ring, consider units u ∊ ZA which have coefficient sum = 1 and are fixed under the involution a —> a-1, a ∊ A. For an odd regular prime p and a p-group A, it is shown that u ≡ 1 mod p if only if u = π(v)v-p, where v is the same kind of unit, and π is the ring endomorphism given by a —> ap, a∊A.


1988 ◽  
Vol 31 (4) ◽  
pp. 500-508 ◽  
Author(s):  
H. E. Bell ◽  
W. S. Martindale

AbstractA semiderivation of a ring R is an additive mapping f:R → R together with a function g:R → R such that f(xy) = f(x)g(y) + xf(y) = f(x)y + g(x)f(y) and f(g(x) ) = g(f(x)) for all x, y ∊ R. Motivating examples are derivations and mappings of the form x → x — g(x), g a ring endomorphism. A semiderivation f of R is centralizing on an ideal U if [f(u), u] is central for all u ∊ U. For R prime of char. ≠2, U a nonzero ideal of R, and 0 ≠ f a semiderivation of R we prove: (1) if f is centralizing on U then either R is commutative or f is essentially one of the motivating examples, (2) if [f(U), f(U) ] is central then R is commutative.


Sign in / Sign up

Export Citation Format

Share Document