scholarly journals A Stokes approximation of two dimensional exterior Oseen flow near the boundary

Author(s):  
Mitsuhiro Okamura ◽  
Yoshihiro Shibata ◽  
Norikazu Yamaguchi
1978 ◽  
Vol 86 (4) ◽  
pp. 609-622 ◽  
Author(s):  
S. Murata ◽  
Y. Miyake ◽  
Y. Tsujimoto ◽  
F. Yamamoto

In the present paper, it is intended to give the elementary solutions of three-dimensional unsteady Oseen flow when unsteady concentrated lift and/or drag is applied in the flow field. It is shown that the pressure fields due to concentrated impulsive lift and/or drag can be represented by an impulsive pressure doublet in the direction of the applied force and the corresponding velocity fields by diffusing free doublets in the direction of the external force that are shed from the location of the force application and convected downstream with otherwise uniform velocity. It is also confirmed that combination of the elementary solutions given in the present paper yields the two-dimensional ones.


Author(s):  
Edmund Chadwick

The horseshoe vortex is given in Oseen flow as a constant spanwise distribution of lift Oseenlets. From this, the vortex line is represented in steady, incompressible Oseen flow. The velocity near to the vortex line is determined, as well as near to and far from the far field wake. The velocity field in the transverse plane near to the vortex line is shown to approximate to the two-dimensional Lamb–Oseen vortex, and the velocity field in the streamwise direction is generated by the bound vortex line of the horseshoe vortex giving a streamwise decay much faster than that of the Batchelor vortex. The far field wake description is shown to be consistent with laminar wake theory.


1987 ◽  
Vol 178 ◽  
pp. 243-256 ◽  
Author(s):  
Erik B. Hansen

The two-dimensional flow of a thin film down a vertical or tilted plane wall into an infinite pool is studied in the Stokes approximation, the principal aim being to determine the shape of the fluid surface. Results are obtained for fluids with or without surface tension. Earlier results by Ruschak, that the surface tension gives rise to thickness variation of the film, are confirmed. For small or vanishing surface tension a dip of the pool surface is found to exist close to the wall. The case of a wall moving downwards is also considered.


Sign in / Sign up

Export Citation Format

Share Document