scholarly journals A new type of limit theorems for the one-dimensional quantum random walk

2005 ◽  
Vol 57 (4) ◽  
pp. 1179-1195 ◽  
Author(s):  
Norio KONNO
2002 ◽  
Vol 2 (Special) ◽  
pp. 578-595
Author(s):  
N. Konno

In this paper we consider limit theorems, symmetry of distribution, and absorption problems for two types of one-dimensional quantum random walks determined by $2 \times 2$ unitary matrices using our PQRS method. The one type was introduced by Gudder in 1988, and the other type was studied intensively by Ambainis et al. in 2001. The difference between both types of quantum random walks is also clarified.


2014 ◽  
Vol 28 (29) ◽  
pp. 1450201
Author(s):  
Seung Ki Baek ◽  
Hawoong Jeong ◽  
Seung-Woo Son ◽  
Beom Jun Kim

The investigation of random walks is central to a variety of stochastic processes in physics, chemistry and biology. To describe a transport phenomenon, we study a variant of the one-dimensional persistent random walk, which we call a zero-one-only process. It makes a step in the same direction as the previous step with probability p, and stops to change the direction with 1 − p. By using the generating-function method, we calculate its characteristic quantities such as the statistical moments and probability of the first return.


Author(s):  
NORIO KONNO

A quantum central limit theorem for a continuous-time quantum walk on a homogeneous tree is derived from quantum probability theory. As a consequence, a new type of limit theorems for another continuous-time walk introduced by the walk is presented. The limit density is similar to that given by a continuous-time quantum walk on the one-dimensional lattice.


Author(s):  
J. He ◽  
B. Q. Zhang

A new hyperbolic function discretization equation for two dimensional Navier-Stokes equation in the stream function vorticity from is derived. The basic idea of this method is to integrat the total flux of the general variable ϕ in the differential equations, then incorporate the local analytic solutions in hyperbolic function for the one-dimensional linearized transport equation. The hyperbolic discretization (HD) scheme can more accurately represent the conservation and transport properties of the governing equation. The method is tested in a range of Reynolds number (Re=100~2000) using the viscous incompressible flow in a square cavity. It is proved that the HD scheme is stable for moderately high Reynolds number and accurate even for coarse grids. After some proper extension, the method is applied to predict the flow field in a new type combustor with air blast double-vortex and obtained some useful results.


1985 ◽  
Vol 17 (03) ◽  
pp. 594-606 ◽  
Author(s):  
Ora E. Percus

We consider an asymmetric random walk, with one or two boundaries, on a one-dimensional lattice. At the boundaries, the walker is either absorbed (with probability 1–ρ) or reflects back to the system (with probability p). The probability distribution (Pn (m)) of being at position m after n steps is obtained, as well as the mean number of steps before absorption. In the one-boundary case, several qualitatively different asymptotic forms of P n(m) result, depending on the relationship between transition probability and the reflection probability.


1985 ◽  
Vol 17 (3) ◽  
pp. 594-606 ◽  
Author(s):  
Ora E. Percus

We consider an asymmetric random walk, with one or two boundaries, on a one-dimensional lattice. At the boundaries, the walker is either absorbed (with probability 1–ρ) or reflects back to the system (with probability p).The probability distribution (Pn(m)) of being at position m after n steps is obtained, as well as the mean number of steps before absorption. In the one-boundary case, several qualitatively different asymptotic forms of Pn(m) result, depending on the relationship between transition probability and the reflection probability.


1976 ◽  
Vol 13 (1) ◽  
pp. 169-175 ◽  
Author(s):  
Saroj Dua ◽  
Shobha Khadilkar ◽  
Kanwar Sen

The paper deals with the one-dimensional modified random walk in the presence of partially reflecting barriers at a and –b (a, b > 0). The simple one-dimensional random walk on a line is the motion-record of a particle which may extend over (–∞, + ∞) or be restricted to a portion of it by absorbing and/or reflecting barriers. Here we introduce the possibility of a particle staying put along with its moving a unit step to the right or to the left and find the bivariate generating functions of the probabilities of a particle reaching m (0 <m <a) under different conditions.


Sign in / Sign up

Export Citation Format

Share Document