Phase transition in one-dimensional random walk with partially reflecting boundaries

1985 ◽  
Vol 17 (03) ◽  
pp. 594-606 ◽  
Author(s):  
Ora E. Percus

We consider an asymmetric random walk, with one or two boundaries, on a one-dimensional lattice. At the boundaries, the walker is either absorbed (with probability 1–ρ) or reflects back to the system (with probability p). The probability distribution (Pn (m)) of being at position m after n steps is obtained, as well as the mean number of steps before absorption. In the one-boundary case, several qualitatively different asymptotic forms of P n(m) result, depending on the relationship between transition probability and the reflection probability.

1985 ◽  
Vol 17 (3) ◽  
pp. 594-606 ◽  
Author(s):  
Ora E. Percus

We consider an asymmetric random walk, with one or two boundaries, on a one-dimensional lattice. At the boundaries, the walker is either absorbed (with probability 1–ρ) or reflects back to the system (with probability p).The probability distribution (Pn(m)) of being at position m after n steps is obtained, as well as the mean number of steps before absorption. In the one-boundary case, several qualitatively different asymptotic forms of Pn(m) result, depending on the relationship between transition probability and the reflection probability.


2008 ◽  
Vol 58 (3) ◽  
Author(s):  
M. El-Shehawey

AbstractTrinomial random walk, with one or two barriers, on the non-negative integers is discussed. At the barriers, the particle is either annihilated or reflects back to the system with respective probabilities 1 − ρ, ρ at the origin and 1 − ω, ω at L, 0 ≤ ρ,ω ≤ 1. Theoretical formulae are given for the probability distribution, its generating function as well as the mean of the time taken before absorption. In the one-boundary case, very qualitatively different asymptotic forms for the result, depending on the relationship between transition probabilities and the annihilation probability, are obtained.


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


2021 ◽  
Vol 11 (5) ◽  
pp. 1980
Author(s):  
Kazimierz Józefiak ◽  
Artur Zbiciak ◽  
Karol Brzeziński ◽  
Maciej Maślakowski

The paper presents classical and non-classical rheological schemes used to formulate constitutive models of the one-dimensional consolidation problem. The authors paid special attention to the secondary consolidation effects in organic soils as well as the soil over-consolidation phenomenon. The systems of partial differential equations were formulated for every model and solved numerically to obtain settlement curves. Selected numerical results were compared with standard oedometer laboratory test data carried out by the authors on organic soil samples. Additionally, plasticity phenomenon and non-classical rheological elements were included in order to take into account soil over-consolidation behaviour in the one-dimensional settlement model. A new way of formulating constitutive equations for the soil skeleton and predicting the relationship between the effective stress and strain or void ratio was presented. Rheological structures provide a flexible tool for creating complex constitutive relationships of soil.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Ahmed M Helmi

Floodways, where a road embankment is permitted to be overtopped by flood water, are usually designed as broad-crested weirs. Determination of the water level above the floodway is crucial and related to road safety. Hydraulic performance of floodways can be assessed numerically using 1-D modelling or 3-D simulation using computational fluid dynamics (CFD) packages. Turbulence modelling is one of the key elements in CFD simulations. A wide variety of turbulence models are utilized in CFD packages; in order to identify the most relevant turbulence model for the case in question, 96 3-D CFD simulations were conducted using Flow-3D package, for 24 broad-crested weir configurations selected based on experimental data from a previous study. Four turbulence models (one-equation, k-ε, RNG k-ε, and k-ω) ere examined for each configuration. The volume of fluid (VOF) algorithm was adopted for free water surface determination. In addition, 24 1-D simulations using HEC-RAS-1-D were conducted for comparison with CFD results and experimental data. Validation of the simulated water free surface profiles versus the experimental measurements was carried out by the evaluation of the mean absolute error, the mean relative error percentage, and the root mean square error. It was concluded that the minimum error in simulating the full upstream to downstream free surface profile is achieved by using one-equation turbulence model with mixing length equal to 7% of the smallest domain dimension. Nevertheless, for the broad-crested weir upstream section, no significant difference in accuracy was found between all turbulence models and the one-dimensional analysis results, due to the low turbulence intensity at this part. For engineering design purposes, in which the water level is the main concern at the location of the flood way, the one-dimensional analysis has sufficient accuracy to determine the water level.


Sign in / Sign up

Export Citation Format

Share Document