scholarly journals Compressional and Shear Wave Velocities and Elastic Moduli of Basalts, Deep Sea Drilling Project, Leg 19

Author(s):  
N.I. Christensen
Geophysics ◽  
1976 ◽  
Vol 41 (5) ◽  
pp. 895-921 ◽  
Author(s):  
A. R. Gregory

The influence of saturation by water, oil, gas, and mixtures of these fluids on the densities, velocities, reflection coefficients, and elastic moduli of consolidated sedimentary rocks was determined in the laboratory by ultrasonic wave propagation methods. Twenty rock samples varying in age from Pliocene to early Devonian and in porosity from 4 to 41 percent were tested under uniform pressures equivalent to subsurface depths of 0 to 18,690 ft. Fluid saturation effects on compressional‐wave velocity are much larger in low‐porosity than in high‐porosity rocks; this correlation is strengthened by elevated pressures but is absent at atmospheric pressure. At a frequency of 1 MHz, the shear‐wave velocities do not always decrease when liquid pore saturants are added to rocks as theorized by Biot; agreement with theory is dependent upon pressure, porosity, fluid‐mineral chemical interactions, and the presence of microcracks in the cementing material. Experimental results support the belief that lower compressional‐wave velocities and higher reflection coefficients are obtained in sedimentary rocks that contain gas. Replacing pore liquids with gas markedly reduces the elastic moduli of rocks, and the effect is enhanced by decreasing pressure. As a rule, the moduli decrease as the porosity increases; Poisson’s ratio is an exception to the rule. Liquid and gas saturation in consolidated rocks can also be distinguished by the ratio of compressional and shear wave velocities [Formula: see text]. The potential diagnostic value of elastic moduli in seismic exploration may stimulate interest in the use of shear‐wave reflection methods in the field.


2009 ◽  
Vol 12 (06) ◽  
pp. 898-911 ◽  
Author(s):  
Tobiloluwa B. Odumosu ◽  
Carlos Torres-Verdín ◽  
Jesús M. Salazar ◽  
Jun Ma ◽  
Benjamin Voss ◽  
...  

Summary Reliable estimates of dry-rock elastic properties are critical to the accurate interpretation of the seismic response of hydrocarbon reservoirs. We describe a new method for estimating elastic moduli of rocks in-situ based on the simulation of mud-filtrate invasion effects on resistivity and acoustic logs. Simulations of mud-filtrate invasion account for the dynamic process of fluid displacement and mixing between mud-filtrate and hydrocarbons. The calculated spatial distributions of electrical resistivity are matched against resistivity logs by adjusting the underlying petrophysical properties. We then perform Biot-Gassmann fluid substitution on the 2D spatial distributions of fluid saturation with initial estimates of dry-bulk (kdry) modulus and shear rigidity (µdry) and a constraint of Poisson's ratio (?d) typical of the formation. This process generates 2D spatial distributions of compressional and shear-wave velocities and density. Subsequently, sonic waveforms are simulated to calculate shear-wave slowness. Initial estimates of the dry-bulk modulus are progressively adjusted using a modified Gregory-Pickett (1963) solution of Biot's (1956) equation to estimate a shear rigidity that converges to the well-log value of shear-wave slowness. The constraint on dynamic Poisson's ratio is then removed and a refined estimate of the dry-bulk modulus is obtained by both simulating the acoustic log (monopole) and matching the log-derived compressional-wave slowness. This technique leads to reliable estimates of dry-bulk moduli and shear rigidity that compare well to laboratory core measurements. Resulting dry-rock elastic properties can be used to calculate seismic compressional-wave and shear-wave velocities devoid of mud-filtrate invasion effects for further seismic-driven reservoir-characterization studies.


Measurement ◽  
2010 ◽  
Vol 43 (3) ◽  
pp. 344-352 ◽  
Author(s):  
F. Adamo ◽  
F. Attivissimo ◽  
L. Fabbiano ◽  
N. Giaquinto ◽  
M. Spadavecchia

Sign in / Sign up

Export Citation Format

Share Document