Air Gun-Ocean Bottom Seismograph Seismic Structure across the Japan Trench Area

Author(s):  
K. Suyehiro ◽  
T. Kanazawa ◽  
H. Shimamura
1988 ◽  
Vol 25 (5) ◽  
pp. 760-772 ◽  
Author(s):  
I. Reid

A seismic-refraction profile was shot on the southern Grand Banks using large air-gun sources and an array of ocean-bottom seismograph receivers. A sediment column 1–2 km thick directly overlies Paleozoic basement with velocity structure similar to that of the Meguma Zone of Nova Scotia. The main crustal layer is 27 km thick, with seismic velocity of 6.3 km/s increasing to about 6.5 km/s in the lowest few kilometres. Complexity is apparent in the crust–mantle transition around 32 km depth. Comparison with deep multichannel reflection data suggests that the increased velocity in the lower part of the crust may be associated with a reflective zone and shows the Mohorovičić discontinuity to be delineated by a well-defined reflection. The absence of a major lower crustal layer of intermediate velocity (> 7 km/s) is consistent with observations elsewhere in the region.


Author(s):  
Yadab P. Dhakal ◽  
Takashi Kunugi ◽  
Wataru Suzuki ◽  
Takeshi Kimura ◽  
Nobuyuki Morikawa ◽  
...  

ABSTRACT A large-scale permanent ocean-bottom seismograph network, named S-net, has been established in the Japan Trench area and consists of 150 observatories equipped with seismometers and tsunamimeters. Most stations at water depths <1500 m were buried to a depth of about 1 m while they were sited freely on the seafloors at greater water depths. To understand the characteristics of strong ground motions on the offshore area, we compared the horizontal vector peak ground accelerations (PGA), peak ground velocities (PGVs), and acceleration response spectra (ARS) between the land and S-net sites for nine earthquakes (5.3≤Mw≤7.1) using ground-motion prediction equations developed for Japan. We found that the observed values of PGAs and short-period (<0.5 s) ARS were generally similar between the land and S-net sites, whereas the PGVs and ARS for the periods longer than 0.5 s were apparently larger at the S-net sites. These results based on data covering a wide area on the seafloors were generally similar to the previous results based on limited ocean-bottom stations. However, analysis of the residuals, within the source-to-site distance of 200 km, revealed that the residual values were smaller in the shallow water region compared to those toward the Japan Trench, which is characterized by proximity to high Qs in the Pacific plate, the presence of thick unconsolidated sediments on the upper crust, and increasing heights of water columns. The difference of station settings in the shallow and deep water regions may also have contributed to the biased distribution of residuals at the short periods. Quantifications of these results are expected to contribute to the predictions of ground motions for earthquake early warning and seismic demand analysis of offshore facilities and await further analysis of a larger data set.


1985 ◽  
Vol 112 (1-4) ◽  
pp. 193-209 ◽  
Author(s):  
Naoshi Hirata ◽  
Toshihiko Kanazawa ◽  
Kiyoshi Suyehiro ◽  
Hideki Shimamura

2019 ◽  
Vol 38 (9) ◽  
pp. 680-690 ◽  
Author(s):  
Benoît Teyssandier ◽  
John J. Sallas

Ten years ago, CGG launched a project to develop a new concept of marine vibrator (MV) technology. We present our work, concluding with the successful acquisition of a seismic image using an ocean-bottom-node 2D survey. The expectation for MV technology is that it could reduce ocean exposure to seismic source sound, enable new acquisition solutions, and improve seismic data quality. After consideration of our objectives in terms of imaging, productivity, acoustic efficiency, and operational risk, we developed two spectrally complementary prototypes to cover the seismic bandwidth. In practice, an array composed of several MV units is needed for images of comparable quality to those produced from air-gun data sets. Because coupling to the water is invariant, MV signals tend to be repeatable. Since far-field pressure is directly proportional to piston volumetric acceleration, the far-field radiation can be well controlled through accurate piston motion control. These features allow us to shape signals to match precisely a desired spectrum while observing equipment constraints. Over the last few years, an intensive validation process was conducted at our dedicated test facility. The MV units were exposed to 2000 hours of in-sea testing with only minor technical issues.


Sign in / Sign up

Export Citation Format

Share Document