crustal layer
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 23)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012004
Author(s):  
A G Kirdyashkin ◽  
A A Kirdyashkin ◽  
Yu M Nepogodina

Abstract A model of the thermal and hydrodynamic structure of the subduction zone is proposed. This model includes free convection flows in the asthenospheric layer and layer C (mantle transition zone). Temperature profiles in the subducting lithospheric plate, as well as in the continental limb of the subduction zone, are presented. The heat flux due to friction at the contact between the subducting plate and the continental limb significantly affects the heat transfer and, consequently, the temperature field formation in the subduction zone. The temperature level in the crustal layer of the submerging plate implies that there is no melting in the crustal layer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sebastian Buntin ◽  
Irina M. Artemieva ◽  
Alireza Malehmir ◽  
Hans Thybo ◽  
Michal Malinowski ◽  
...  

AbstractThe nature of the lower crust and the crust-mantle transition is fundamental to Earth sciences. Transformation of lower crustal rocks into eclogite facies is usually expected to result in lower crustal delamination. Here we provide compelling evidence for long-lasting presence of lower crustal eclogite below the seismic Moho. Our new wide-angle seismic data from the Paleoproterozoic Fennoscandian Shield identify a 6–8 km thick body with extremely high velocity (Vp ~ 8.5–8.6 km/s) and high density (>3.4 g/cm3) immediately beneath equally thinned high-velocity (Vp ~ 7.3–7.4 km/s) lowermost crust, which extends over >350 km distance. We relate this observed structure to partial (50–70%) transformation of part of the mafic lowermost crustal layer into eclogite facies during Paleoproterozoic orogeny without later delamination. Our findings challenge conventional models for the role of lower crustal eclogitization and delamination in lithosphere evolution and for the long-term stability of cratonic crust.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ayush Goyal ◽  
Shu-Huei Hung

Multiple tectonic events since the Neoproterozoic era have framed the present-day lithosphere in the Fujian province affiliated with the eastern part of the South China Block. Comprehensive information of the crustal structure and bulk properties can aid to understand the geological features and tectonic processes of still much debate in this region. An attempt is made in this study to explore crustal thickness and internal velocities across Fujian using the teleseismic receiver functions (RFs). The H-V stacking of joint P and S RFs improves to simultaneously estimate crustal thickness, average Vp and Vs, and derived Vp/Vs ratio and bulk sound speed in three backazimuth sectors for each of 17 stations. Furthermore, a Neighborhood Algorithm nonlinear inversion of P RFs is employed to determine the layered structures of Vs and Vp/Vs beneath all the stations. Results indicate the crustal thickness varies from at most ∼35 km in northwest Fujian to 30–35 km in the inland mountains and 27–30 km in the southeastern coasts. The inferred Moho geometry is nonplanar or inclined across the Zhenghe-Dapu (ZD) and Changle-Zhaoan (CZ) fault zones, especially in the southern ZD fault area. The average Vp/Vs suggests that the crust is predominantly felsic in the Wuyi-Yunkai orogen and intermediate-to-mafic in the Cretaceous magmatic and metamorphic zones. A high-velocity upper crust along the coastline is revealed, which attributes to the Pingtan-Dongshan metamorphic belt. At the sites near the ZD fault zone, the intracrustal negative discontinuity occurs at a shallower depth of ∼15 km marking an abrupt Vs decrease into the low-velocity mid-to-lower crustal layer, probably linked to the closed paleo-rift basin remnants. The lower crust across the Fujian is generally characterized by relatively lower Vs and higher Vp/Vs (1.80–1.84) consistent with those of the mafic-ultramafic rocks, which do not support the proposed extensive magmatic underplating in the Late Mesozoic.


2021 ◽  
Vol 12 (3) ◽  
pp. 471-484
Author(s):  
A. A. Kirdyashkin ◽  
A. G. Kirdyashkin ◽  
V. E. Distanov ◽  
I. N. Gladkov

The subduction of an oceanic plate is studied as the motion of a high-viscosity Newtonian fluid. The subducting plate spreads along the 670-km depth boundary under the influence of oppositely directed horizontal forces. These forces are due to oppositely directed horizontal temperature gradients. We consider the flow structure and heat transfer in the layer that includes both the oceanic lithosphere and the crust and moves underneath a continent. The heat flow is estimated at the contact between the subducting plate and the surrounding mantle in the continental limb of the subduction zone. Our study results show that the crustal layer of the subducting plate can melt and a thermochemical plume can form at the 670-km boundary. Our model of a thermochemical plume in the subduction zone shows the following: (1) formation of a plume conduit in the crustal layer of the subducting plate; (2) formation of a primary magmatic chamber in the area wherein the melting rate equals the rate of subduction; (3) origination of a vertical plume conduit from the primary chamber melting through the continent; (4) plume eruption through the crustal layer to the surface, i.e. formation of a volcano. Our experiments are aimed to model the plume conduit melting in an inclined flat layer above a local heat source. The melt flow structure in the plume conduit is described. Laboratory modeling have revealed that the mechanisms of melt eruption from the plume conduit differ depending on whether a gas cushion is present or absent at the plume roof.


2021 ◽  
Vol 228 (1) ◽  
pp. 631-663
Author(s):  
Kyle Batra ◽  
Bradford Foley

SUMMARY Stagnant-lid convection, where subduction and surface plate motion is absent, is common among the rocky planets and moons in our solar system, and likely among rocky exoplanets as well. How stagnant-lid planets thermally evolve is an important issue, dictating not just their interior evolution but also the evolution of their atmospheres via volcanic degassing. On stagnant-lid planets, the crust is not recycled by subduction and can potentially grow thick enough to significantly impact convection beneath the stagnant lid. We perform numerical models of stagnant-lid convection to determine new scaling laws for convective heat flux that specifically account for the presence of a buoyant crustal layer. We systematically vary the crustal layer thickness, crustal layer density, Rayleigh number and Frank–Kamenetskii parameter for viscosity to map out system behaviour and determine the new scaling laws. We find two end-member regimes of behaviour: a ‘thin crust limit’, where convection is largely unaffected by the presence of the crust, and the thickness of the lithosphere is approximately the same as it would be if the crust were absent; and a ‘thick crust limit’, where the crustal thickness itself determines the lithospheric thickness and heat flux. Scaling laws for both limits are developed and fit the numerical model results well. Applying these scaling laws to rocky stagnant-lid planets, we find that the crustal thickness needed for convection to enter the thick crust limit decreases with increasing mantle temperature and decreasing mantle reference viscosity. Moreover, if crustal thickness is limited by the formation of dense eclogite, and foundering of this dense lower crust, then smaller planets are more likely to enter the thick crust limit because their crusts can grow thicker before reaching the pressure where eclogite forms. When convection is in the thick crust limit, mantle heat flux is suppressed. As a result, mantle temperatures can be elevated by 100 s of degrees K for up to a few Gyr in comparison to a planet with a thin crust. Whether convection enters the thick crust limit during a planet’s thermal evolution also depends on the initial mantle temperature, so a thick, buoyant crust additionally acts to preserve the influence of initial conditions on stagnant-lid planets for far longer than previous thermal evolution models, which ignore the effects of a thick crust, have found.


2021 ◽  
Author(s):  
Frank Zwaan ◽  
Pauline Chenin ◽  
Duncan Erratt ◽  
Gianreto Manatschal ◽  
Guido Schreurs

The competition between the impact of inherited weaknesses and plate kinematics determines the location and style of deformation during rifting, yet the relative impacts of these “internal” and “external” factors remain poorly understood, especially in 3D. In this study we used brittle-viscous analogue models to assess how multiphase rifting, i.e., changes in plate divergence rate or direction, and the distribution of weaknesses in the competent mantle and crust influence rift evolution. We find that the combined reactivation of mantle and crustal weaknesses without kinematic changes creates complex rift structures. Divergence rates affects the strength of the weak lower crustal layer and hence the degree of mantle-crustal coupling. In this context slow rifting decreases coupling, so that crustal weaknesses can easily localize deformation and dominate surface structures, whereas fast rifting increases coupling so that deformation related to mantle weaknesses can have a dominant surface expression. Through a change from slow to fast rifting mantle-related deformation can overprint previous structures that formed along (differently oriented) crustal weaknesses. Conversely, a change from fast to slow rifting may shift deformation from mantle-controlled towards crust-controlled. When changing divergence directions, structures from the first rifting phase may control where subsequent deformation occurs, but only when they are well developed. Alternatively, they are ignored during subsequent rifting. We furthermore place our results in a larger framework of brittle-viscous rift modelling results from previous experimental studies, showing the importance of genral lithospheric layering, divergence rate, the type of deformation in the mantle, and finally upper crustal structural inheritance. The interaction between these parameters can lead to a large variety of deformation styles that may often lead to comparable end products. Therefore, detailed investigation of faulting and to an equal extent basin depocenter distribution over time is required to properly determine the evolution of complex rift systems. These insights provide a strong incentive to revisit various natural examples.


Solid Earth ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1473-1495
Author(s):  
Frank Zwaan ◽  
Pauline Chenin ◽  
Duncan Erratt ◽  
Gianreto Manatschal ◽  
Guido Schreurs

Abstract. During lithospheric extension, localization of deformation often occurs along structural weaknesses inherited from previous tectonic phases. Such weaknesses may occur in both the crust and mantle, but the combined effects of these weaknesses on rift evolution remain poorly understood. Here we present a series of 3D brittle–viscous analogue models to test the interaction between differently oriented weaknesses located in the brittle upper crust and/or upper mantle. We find that crustal weaknesses usually express first at the surface, with the formation of grabens parallel to their orientation; then, structures parallel to the mantle weakness overprint them and often become dominant. Furthermore, the direction of extension exerts minimal control on rift trends when inherited weaknesses are present, which implies that present-day rift orientations are not always indicative of past extension directions. We also suggest that multiphase extension is not required to explain different structural orientations in natural rift systems. The degree of coupling between the mantle and upper crust affects the relative influence of the crustal and mantle weaknesses: low coupling enhances the influence of crustal weaknesses, whereas high coupling enhances the influence of mantle weaknesses. Such coupling may vary over time due to progressive thinning of the lower crustal layer, as well as due to variations in extension velocity. These findings provide a strong incentive to reassess the tectonic history of various natural examples.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hidayat Hidayat ◽  
Andri Dian Nugraha ◽  
Awali Priyono ◽  
Marjiyono Marjiyono ◽  
Januar H. Setiawan ◽  
...  

The Banyumas Basin is a tertiary sedimentary basin located in southern Central Java, Indonesia. Due to the presence of volcanic deposits, 2-D seismic reflection methods cannot provide a good estimation of the sediment thickness and the subsurface geology structure in this area. In this study, the passive seismic tomography (PST) method was applied to image the 3-D subsurface Vp, Vs, and Vp/Vs ratio. We used 70 seismograph borehole stations with a recording duration of 177 days. A total of 354 events with 9, 370 P and 9, 368 S phases were used as input for tomographic inversion. The checkshot data of a 4, 400-meter deep exploration well (Jati-1) located within the seismic network were used to constrain the shallow crustal layer of the initial 1-D velocity model. The model resolution of the tomographic inversions was assessed using the checkerboard resolution test (CRT), the diagonal resolution element (DRE), and the derivative weight sum (DWS). Using the obtained Vp, Vs, and Vp/Vs ratio, we were able to sharpen details of the geological structures within the basin from previous geological studies, and a fault could be well-imaged at a depth of 4 km. We interpreted this as the main dextral strike-slip fault that controls the pull apart process of the Banyumas Basin. The thickness of the sediment layers, as well as its layering, were also could be well determined. We found prominent features of the velocity contrast that aligned very well with the boundary between the Halang and Rambatan formations as observed in the Jati-1 well data. Furthermore, an anticline structure, which is a potential structural trap for the petroleum system in the Banyumas Basin, was also well imaged. This was made possible due to the dense borehole seismographic stations which were deployed in the study area.


2021 ◽  
Author(s):  
Irina M. Artemieva ◽  
Hans Thybo

<p>Antarctica has traditionally been considered continental inside the coastline of ice and bedrock since Press and Dewart (1959). Sixty years later, we reconsider the conventional extent of this sixth continent (Artemieva and Thybo, Earth-Science Reviews, 2020, https://doi.org/10.1016/j.earscirev.2020.103106). </p><p>Geochemical observations show that subduction was active along the whole western coast of West Antarctica until the mid-Cretaceous after which it gradually ceased towards the tip of the Antarctic Peninsula. We propose that the entire West Antarctica formed as a back-arc basin system flanked by a volcanic arc, similar to e.g. the Japan Sea, instead of a continental rift system as conventionally interpreted and tagged in the literature as “West Antarctica Rift System”.</p><p>Globally, the fundamental difference between oceanic and continental lithosphere is reflected in hypsometry, largely controlled by lithosphere buoyancy. The equivalent (corrected for ice and water) hypsometry in West Antarctica (−580 ± 335 m on average, extending down to −1580 m) is much deeper than in any continent, since even continental shelves do not extend deeper than −200 m in equivalent hypsometry. However, an unusually deep equivalent hypsometry in West Antarctica corresponds to back-arc basins (with average values of equivalent hypsometry between ca −3000 m and −300 m) and oceans proper. This first order observation questions the conventional interpretation of West Antarctica as continental.</p><p>We present a suite of geophysical observations that supports our geodynamic interpretation:</p><ul><li>a linear belt of seismicity sub-parallel to the volcanic arc along the Pacific margin of West Antarctica;</li> <li>a pattern of free air gravity anomalies typical of subduction systems;</li> <li>and extremely thin crystalline crust typical of back-arc basins.</li> </ul><p>We calculate lithosphere density for two end-member scenarios to fit the calculated mantle residual gravity anomalies and seismic data on crustal thickness and demonstrate that it requires the presence of:</p><ul><li>(1) a thick sedimentary sequence of up to ca. 50% of the total crustal thickness, or</li> <li>(2) extremely low density mantle below the deep basins of West Antarctica and, possibly, the Wilkes Basin in East Antarctica.</li> </ul><p>Case (1) implies that for 25 ±6 km of the total crustal thickness, the crystalline basement is only 12-15 km thick, and such values are not observed in continental crust. Case (2) requires the presence of anomalously hot mantle below the entire West Antarctica with a size much larger than around continental rifts.</p><p>These results favor the presence of oceanic or transitional crust in most of West Antarctica and possibly beneath the Ronne Ice Shelf. Our model predicts that a granitic crustal layer with a high radiogenic heat production is almost absent in most of West Antarctica, which may affect heat flux at the base of the ice with potential important implications for models of ice melting. We propose, by analogy with back-arc basins in the Western Pacific, the existence of rotated back-arc basins caused by differential slab roll-back during subduction of the Phoenix plate under the West Antarctica margin.</p><p>Our finding reduces the continental lithosphere in Antarctica to 2/3 of its traditional area. It has significant implications for global models of lithosphere-mantle dynamics and models of the ice sheet evolution.</p>


2021 ◽  
Author(s):  
Sreetama Roy ◽  
Santanu Bose ◽  
Puspendu Saha

<p>Fold and thrust belts (FTBs), formed by the collision of two continental plates, accommodate tectonic convergence through folding and faulting of crustal rocks. The effects of distributed deformation although ubiquitous in all fold-and-thrust belts, regionally occurring ductile structures are often interpreted as an outcome of localized deformation. Our study presents 3D laboratory-scale models using a viscous thin sheet as crustal layer to investigate the evolution of distributed ductile strain in FTBs. Here, we tested the role of mechanical coupling at the basal decollement (i.e., weak versus strong) on the nature of ductile strain variations within a deforming tectonic wedge. Convergence velocity has been kept constant in all experiments to avoid the influence of rate-dependence on viscous rheology. Our results reveal that the mode of wedge growth with changing basal coupling is crucial for varying strain pattern towards the hinterland. Weak decollement models yield a zone of constriction towards the central part of the hinterland, explaining the occurrence of isolated patches of L-tectonites and cross-folds in FTBs; while strong decollement condition allows the gravity-driven flow to be dominant over horizontal shortening, leading to rotation of earlier structures and formation of orogen-parallel recumbent folds, particularly towards the hinterland. The deformation towards the frontal part of the tectonic wedge, irrespective of coupling strength in both models is similar, forming a characteristic pattern of pervasive, hinterland dipping ductile fabrics. We correlate our findings to infer that spatio-temporal variations in basal coupling are responsible for the development of variably occurring ductile structures in FTBs.</p>


Sign in / Sign up

Export Citation Format

Share Document