scholarly journals Cramer-type formula for the polynomial solutions of coupled linear equations with polynomial coefficients

1985 ◽  
Vol 21 (1) ◽  
pp. 237-254
Author(s):  
Tateaki Sasaki
Author(s):  
S. M. Shah ◽  
Joseph Wiener

A brief survey of recent results on distributional and entire solutions of ordinary differential equations (ODE) and functional differential equations (FDE) is given. Emphasis is made on linear equations with polynomial coefficients. Some work on generalized-function solutions of integral equations is also mentioned.


Open Physics ◽  
2013 ◽  
Vol 11 (3) ◽  
Author(s):  
David Brandon ◽  
Nasser Saad

AbstractThe one-dimensional Schrödinger’s equation is analysed with regard to the existence of exact solutions for decatic polynomial potentials. Under certain conditions on the potential’s parameters, we show that the decatic polynomial potential V (x) = ax 10 + bx 8 + cx 6 + dx 4 + ex 2, a > 0 is exactly solvable. By examining the polynomial solutions of certain linear differential equations with polynomial coefficients, the necessary and sufficient conditions for corresponding energy-dependent polynomial solutions are given in detail. It is also shown that these polynomials satisfy a four-term recurrence relation, whose real roots are the exact energy eigenvalues. Further, it is shown that these polynomials generate the eigenfunction solutions of the corresponding Schrödinger equation. Further analysis for arbitrary values of the potential parameters using the asymptotic iteration method is also presented.


Author(s):  
J. C. García-Ardila ◽  
M. E. Marriaga

AbstractGiven a linear second-order differential operator $${\mathcal {L}}\equiv \phi \,D^2+\psi \,D$$ L ≡ ϕ D 2 + ψ D with non zero polynomial coefficients of degree at most 2, a sequence of real numbers $$\lambda _n$$ λ n , $$n\geqslant 0$$ n ⩾ 0 , and a Sobolev bilinear form $$\begin{aligned} {\mathcal {B}}(p,q)\,=\,\sum _{k=0}^N\left\langle {{\mathbf {u}}_k,\,p^{(k)}\,q^{(k)}}\right\rangle , \quad N\geqslant 0, \end{aligned}$$ B ( p , q ) = ∑ k = 0 N u k , p ( k ) q ( k ) , N ⩾ 0 , where $${\mathbf {u}}_k$$ u k , $$0\leqslant k \leqslant N$$ 0 ⩽ k ⩽ N , are linear functionals defined on polynomials, we study the orthogonality of the polynomial solutions of the differential equation $${\mathcal {L}}[y]=\lambda _n\,y$$ L [ y ] = λ n y with respect to $${\mathcal {B}}$$ B . We show that such polynomials are orthogonal with respect to $${\mathcal {B}}$$ B if the Pearson equations $$D(\phi \,{\mathbf {u}}_k)=(\psi +k\,\phi ')\,{\mathbf {u}}_k$$ D ( ϕ u k ) = ( ψ + k ϕ ′ ) u k , $$0\leqslant k \leqslant N$$ 0 ⩽ k ⩽ N , are satisfied by the linear functionals in the bilinear form. Moreover, we use our results as a general method to deduce the Sobolev orthogonality for polynomial solutions of differential equations associated with classical orthogonal polynomials with negative integer parameters.


Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 286
Author(s):  
Kyle R. Bryenton ◽  
Andrew R. Cameron ◽  
Keegan L. A. Kirk ◽  
Nasser Saad ◽  
Patrick Strongman ◽  
...  

The analysis of many physical phenomena is reduced to the study of linear differential equations with polynomial coefficients. The present work establishes the necessary and sufficient conditions for the existence of polynomial solutions to linear differential equations with polynomial coefficients of degree n, n−1, and n−2 respectively. We show that for n≥3 the necessary condition is not enough to ensure the existence of the polynomial solutions. Applying Scheffé’s criteria to this differential equation we have extracted n generic equations that are analytically solvable by two-term recurrence formulas. We give the closed-form solutions of these generic equations in terms of the generalized hypergeometric functions. For arbitrary n, three elementary theorems and one algorithm were developed to construct the polynomial solutions explicitly along with the necessary and sufficient conditions. We demonstrate the validity of the algorithm by constructing the polynomial solutions for the case of n=4. We also demonstrate the simplicity and applicability of our constructive approach through applications to several important equations in theoretical physics such as Heun and Dirac equations.


Sign in / Sign up

Export Citation Format

Share Document