Research on Subway Traffic Dispatcher Team Error Issues in Accident Management

Author(s):  
Feng Lin ◽  
Jie Wang ◽  
Lian-feng Xu
Keyword(s):  
Kerntechnik ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. 22-28
Author(s):  
Z. Huang ◽  
H. Miao ◽  
H. Hsieh ◽  
N. Li ◽  
D. Gu

1983 ◽  
Author(s):  
D. K. Shaver ◽  
R. L. Berkowitz ◽  
P. V. Washburne

2020 ◽  
pp. 1-12
Author(s):  
Marko Bohanec ◽  
Ivan Vrbanić ◽  
Ivica Bašić ◽  
Klemen Debelak ◽  
Luka Štrubelj

Author(s):  
Svetlin Philipov ◽  
Kalin Filipov

This paper presents the results of an analysis of the application of CFD tool to help hydrogen management. Some information pointed out the problem of hydrogen generation and distribution. Passive autocatalytic recombiners are the point of interest and mainly PAR units’ location. A severe accident is taken into account regarding the sources of hydrogen generation. The analysis of the severe accident progression is performed with MELCOR code. CFD tool Fluent (ANSYS) is applied to assess hydrogen and steam distribution in the atmosphere of the containment (confinement). The NPP unit of type WWER 440 (V230) is considered but as it is stressed this fact is irrelevant to phenomena and accident management targets.


2011 ◽  
Vol 175 (3) ◽  
pp. 572-593 ◽  
Author(s):  
César Queral ◽  
Juan González-Cadelo ◽  
Gonzalo Jimenez ◽  
Ernesto Villalba

Author(s):  
Mitsuhiro Suzuki ◽  
Takeshi Takeda ◽  
Hideo Nakamura

Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary sides in case of core temperature excursion. Test 6-1 is the first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reasons of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection.


Sign in / Sign up

Export Citation Format

Share Document