Performance of Core Exit Thermocouple for PWR Accident Management Action in Vessel Top Break LOCA Simulation Experiment at OECD/NEA ROSA Project

Author(s):  
Mitsuhiro Suzuki ◽  
Takeshi Takeda ◽  
Hideo Nakamura

Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary sides in case of core temperature excursion. Test 6-1 is the first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reasons of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection.

Author(s):  
S. Gallardo ◽  
A. Querol ◽  
G. Verdú

In the transients produced during Small Break Loss-Of-Coolant Accidents (SBLOCA), the maximum Peak Cladding Temperature (PCT) in the core could suffer rapid excursions which might strongly affect the core integrity. Most Pressurized Water Reactors (PWR) have Core Exit Thermocouples (CETs) to detect core overheating by considering that superheated steam flows in the upward direction when core uncovery occurs during SBLOCAs. Operators may start Accident Management (AM) actions to mitigate such accident conditions when the CET temperature exceeds a certain value. However, in a Vessel Upper Head SBLOCA, a significant delay in time and temperature rise of CETs from core heat-up can be produced. This work is developed in the frame of OECD/NEA ROSA Project Test 6-1 (SB-PV-9 in JAEA) handled in the Large Scale Test Facility (LSTF) of the Japan Atomic Energy Agency (JAEA). Test 6-1 simulated a PWR pressure vessel Upper-Head SBLOCA with a break size equivalent to 1.9% of the cold leg break under the assumption of total failure of High Pressure Injection System (HPIS). The paper shows several analyses about the geometry variables (size, location, flow paths and Upper Head nodalization) which can influence on the pressure vessel Upper Head SBLOCA model performed using the thermal-hydraulic code TRACE5.


2016 ◽  
Vol 2 (2) ◽  
Author(s):  
Andrea Querol ◽  
Sergio Gallardo ◽  
Gumersindo Verdú

During loss-of-coolant accidents (LOCAs), operators may start accident management (AM) actions when the core exit temperature (CET) measured by thermocouples exceeds a certain value. However, a significant time delay and temperature discrepancy in the superheat detection were observed in several facilities. This work is focused on clarifying CET thermocouple responses versus peak cladding temperature (PCT) and studying if the same physical phenomena are reproduced in two TRACE5 models with different geometry (a large-scale test facility (LSTF) and a scaled-up LSTF) during a pressure vessel (PV) upper head small break LOCA (SBLOCA). Results obtained show that the delay between the core uncover and the CET excursion is reproduced in both cases.


Author(s):  
Takeshi Takeda ◽  
Iwao Ohtsu

An experiment focusing on nitrogen gas behavior during reflux cooling in a pressurized water reactor (PWR) was performed with the rig of safety assessment/large scale test facility (ROSA/LSTF) at Japan Atomic Energy Agency. The test conditions were made such as the constant core power of 0.7% of the volumetric-scaled PWR nominal power and the primary pressure of lower than 1 MPa, unlike a previous related test with the LSTF. The steam generator (SG) secondary-side collapsed liquid level was maintained at a certain liquid level above the SG tube height. Nitrogen gas was injected stepwise into each SG inlet plenum at a certain constant amount. The primary pressure and the SG U-tube fluid temperatures were greatly dependent on the amount of nitrogen gas accumulated in the SG U-tubes. Nitrogen gas accumulated from the outlet towards the inlet of the SG U-tubes. Non-uniform flow behavior was observed among the SG U-tubes with nitrogen gas ingress. The RELAP5/MOD3.3 code indicated remaining problems in the predictions of the primary pressure and the SG U-tube fluid temperatures after nitrogen gas inflow.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hao Yu ◽  
Minjun Peng

Interest in evaluation of severe accidents induced by extended station blackout (ESBO) has significantly increased after Fukushima. In this paper, the severe accident process under the high and low pressure induced by an ESBO for a small integrated pressurized water reactor (IPWR)-IP200 is simulated with the SCDAP/RELAP5 code. For both types of selected scenarios, the IP200 thermal hydraulic behavior and core meltdown are analyzed without operator actions. Core degradation studies firstly focus on the changes in the core water level and temperature. Then, the inhibition of natural circulation in the reactor pressure vessel (RPV) on core temperature rise is studied. In addition, the phenomena of core oxidation and hydrogen generation and the reaction mechanism of zirconium with the water and steam during core degradation are analyzed. The temperature distribution and time point of the core melting process are obtained. And the IP200 severe accident management guideline (SAMG) entry condition is determined. Finally, it is compared with other core degradation studies of large distributed reactors to discuss the influence of the inherent design characteristics of IP200. Furthermore, through the comparison of four sets of scenarios, the effects of the passive safety system (PSS) on the mitigation of severe accidents are evaluated. Detailed results show that, for the quantitative conclusions, the low coolant storage of IP200 makes the core degradation very fast. The duration from core oxidation to corium relocation in the lower-pressure scenario is 53% faster than that of in the high-pressure scenario. The maximum temperature of liquid corium in the lower-pressure scenario is 134 K higher than that of the high-pressure scenario. Besides, the core forms a molten pool 2.8 h earlier in the lower-pressure scenario. The hydrogen generated in the high-pressure scenario is higher when compared to the low-pressure scenario due to the slower degradation of the core. After the reactor reaches the SAMG entry conditions, the PSS input can effectively alleviate the accident and prevent the core from being damaged and melted. There is more time to alleviate the accident. This study is aimed at providing a reference to improve the existing IPWR SAMGs.


Author(s):  
Klaus Umminger ◽  
Simon Philipp Schollenberger ◽  
Se´bastien Cornille ◽  
Claire Agnoux ◽  
Delphine Quintin ◽  
...  

In the course of a small break LOCA in a Pressurized Water Reactor (PWR) the flow regime in the Reactor Cooling System (RCS) passes through a number of different phases and the filling level may decrease down to the point where the decay heat is transferred to the secondary side under Reflux-Condenser (RC) conditions. During RC, the steam formed in the core condensates in the Steam Generator (SG) U-tubes. For a limited range of break size and configuration, a continuous accumulation of condensate may cause the formation of boron-depleted slugs. If natural circulation reestablishes, as the RCS is refilled, boron-depleted slugs might be transported to the Reactor Pressure Vessel (RPV) and to the core. To draw conclusions on the risk of boron dilution processes in SB-LOCA transients, two important issues, the limitation of slug size and the onset of Natural Circulation (NC) have to be assessed on the basis of experimental data, as system Thermal-Hydraulic codes are limited in their capability to replicate the complex physical phenomena involved. The OECD PKL III tests were performed at AREVA’s PKL test facility in Erlangen, Germany, to evaluate important phases of the boron dilution transient in PWRs. Several integral and separate effect tests were conducted, addressing the inherent boron dilution issue. The PKL III integral transient test runs provide sufficient data to state major conclusions on the formation and maximum possible size of the boron-depleted slugs, their boron concentration and their transport into the RPV with the restart of NC. Some of these conclusions can be applied to reactor scale. It has to be mentioned, that even though this paper is based on PKL test results obtained within the OECD PKL project, the conclusions of this paper reflect the views of the authors and not necessarily of all the members of the OECD PKL project.


Author(s):  
Dwi Irwanto ◽  
Akira Satou ◽  
Takeshi Takeda ◽  
Hideo Nakamura

A 3D steam flow within simulated fuel bundle of Large Scale Test Facility (LSTF), a PWR system simulator, has been investigated by Computational Fluid Dynamics (CFD) analysis with Ansys Fluent code to clarify influences of the steam flow on Core Exit Temperature (CET) response. A LSTF SBLOCA experiment with 1.5% hot leg break as the OECD/NEA ROSA-2 Project Test 3 was simulated by the CFD code to clarify relation between CET and fuel rod surface temperature. A portion of the LSTF core above the mixture level up to around CET sensors was modeled by taking into account high, medium and low heat-zone heater rod bundle, including internal structures such as end-box and upper core plate (UCP). Simulation of steady-state condition at a certain time when mixture level lowered to a certain position at around half of the core height (post-5) was carried out by considering relevant boundary conditions which were developed based on the LSTF Test 3 results. The calculation results revealed that inner structures of the core such as core spacer, end box and UCP indeed affect the CET due to heat transfer from hot steam to these cool structures. 3D flow mixing may also contribute to the final CET values and the delayed increase in the CET relative to the Peak Cladding Temperature (PCT) in the core.


Author(s):  
T. Ho¨hne ◽  
S. Kliem ◽  
H.-M. Prasser ◽  
U. Rohde

The work was aimed at the experimental investigation and numerical simulation of coolant mixing in the downcomer and the lower plenum of pressurized water reactors (PWR). For the investigation of the relevant mixing phenomena, the Rossendorf test facility ROCOM has been designed. ROCOM is a 1:5 scaled Plexiglas model of a German PWR allowing conductivity measurements by wire mesh sensors and velocity measurements by LDA technique. The CFD calculations were carried out with the CFD-code CFX-4. For the design of the facility, calculations were performed to analyze the scaling of the model. It was found, that the scaling of 1:5 to the prototype meets both: physical and economical demands. Flow measurements and the corresponding CFD calculations in the ROCOM downcomer under steady state conditions showed a Re number independency at nominal flow rates. The flow field is dominated by recirculation areas below the inlet nozzles. Transient flow measurements with high performance LDA-technique showed in agreement with CFX-4 results, that in the case of the start up of a pump after a laminar stage large vortices dominate the flow. In the case of stationary mixing, the maximum value of the averaged mixing scalar at the core inlet was found in the sector below the inlet nozzle, where the tracer was injected. At the start-up case of one pump due to a strong impulse driven flow at the inlet nozzle the horizontal part of the flow dominates in the downcomer. The injection is distributed into two main jets, the maximum of the tracer concentration at the core inlet appears at the opposite part of the loop where the tracer was injected. For turbulent flows the CFD-Code CFX-4 was validated and can be used in reactor safety analysis. Due to the good agreement between measured results and the corresponding CFD-calculation efficient modules for the coupling of thermal hydraulic computer codes with three-dimensional neutron-kinetic models using the results of this work can be developed. A better description of the mixing processes inside the RPV is the basis of a more realistic safety assessment.


Author(s):  
Hernan Tinoco ◽  
Stefan Ahlinder

A thermal mixing analysis of the Downcomer, Main Recirculation Pumps (MRPs) and Lower plenum of Forsmark’s Unit 3 has been carried out with three separate CFD models. Several difficulties with the boundary conditions have been encountered, particularly with the MRP model. The results obtained predict stable temperature differences of around 8 K at the core inlet. Such large temperature differences have never been observed at Forsmark NPP. Temperature measurements at four positions above the Reactor Pressure Vessel (RPV) bottom give the mean value used as the core inlet temperature for core analyses with codes such as POLCA. The temperature transmitters used are rather slow and inaccurate. Still, they should be able to detect large stable temperature differences such as those predicted by the aforementioned computations. Indirect indication of the incongruity of these predictions is the possibility of fuel damage caused by such large temperature differences. Fuel damage other than the one caused by debris fretting (thread-like particles) through mechanical influence has not been reported at Forsmark NPP since the implementation of liner cladding in fuel design. Also, the aforementioned difficulties with the connection of the models throw some doubt upon the accuracy of these predictions. A completely connected model of the same RPV volume covered by the separate models predicts temperature differences at core inlet that are almost a fourth of those mentioned above, i. e. approximately 2.5 K. Most of the mixing occur downstream of the MRP diffusers, at the Lower Plenum “inlet”. The reason for this prediction divergence is an impossibility of a correct transfer of complete three-dimensional flow field properties by means of boundary conditions defined at a two-dimensional inlet section.


Author(s):  
Takeshi Takeda ◽  
Iwao Ohtsu ◽  
Taisuke Yonomoto

An experiment on a PWR station blackout transient with the TMLB’ scenario and accident management (AM) measures was conducted using the ROSA/large scale test facility (LSTF) at Japan Atomic Energy Agency under an assumption of non-condensable gas inflow to the primary system from accumulator (ACC) tanks. The AM measures proposed in this study are steam generator (SG) secondary-side depressurization by fully opening the safety valves in both SGs with the start of core uncovery and coolant injection into the secondary-side of both SGs at low pressures. The LSTF test revealed the primary pressure started to decrease when the SG primary-to-secondary heat removal resumed soon after the coolant injection into the SG secondary-side. The primary depressurization worsened due to the gas accumulation in the SG U-tubes after the completion of ACC coolant injection. The RELAP5 code predicted well the overall trend of the major phenomena observed in the LSTF test, and indicated remaining problems in the predictions of SG U-tube collapsed liquid level and primary mass flow rate after the gas ingress. The SG coolant injection flow rate was found to affect significantly the peak cladding temperature and the ACC actuation time through the RELAP5 sensitivity analyses.


Author(s):  
Ikuo Kinoshita ◽  
Toshihide Torige ◽  
Michio Murase ◽  
Yoshitaka Yoshida ◽  
Takeshi Takeda ◽  
...  

The application of the Best Estimate Plus Uncertainty (BEPU) method is made to analysis of the “Intentional depressurization of steam generator secondary side” which is an accident management procedure in a small-break loss-of-coolant accident (SBLOCA) with high pressure injection (HPI) system failure. RELAP5/MOD3.2 is used as the analysis code. By applying the BEPU method, the uncertainties of the analysis results can be estimated quantitatively. However, the accuracy of the analysis results depends primarily on the base case result predicted by the best estimate code. In this study, in order to investigate the appropriate base case model, simulation analyses using the RELAP5/MOD3.2 were carried out for the ROSA Large Scale Test Facility (ROSA/LSTF) secondary-side depressurization tests. It was found that the code predicted well the major event progressions such as pressure responses, core liquid level responses, and rod surface temperatures, as well as important phenomena such as formation and clearing of loop seals, accumulation of water from condensation, and countercurrent flow limitation (CCFL) at the inlet of the U-tubes, which are characteristic features of this accident scenario.


Sign in / Sign up

Export Citation Format

Share Document