scholarly journals Application of Swarm Intelligent Algorithm Optimization Neural Network in Network Security

Author(s):  
Hui Xia
2021 ◽  
Vol 2078 (1) ◽  
pp. 012067
Author(s):  
Jingcheng Zhao ◽  
Xiaomeng Li ◽  
Yaofu Cao ◽  
Junwen Liu ◽  
Junlu Yan ◽  
...  

Abstract In recent years, international industrial control network security incidents have occurred frequently. As a core component of the industrial control field, intelligent power control systems are increasingly threatened by external network attacks. Based on the current research status of power industrial control network security, closely combining the development of active monitoring and defense technology in the public network field and the problems encountered by network security operators in actual work, this paper uses data mining methods to study the power control system network security situation awareness technology. Combing operational data collection and integrated processing, situation index screening and extraction, we use wavelet neural network analysis method to train the sampled data set, and finally calculate the true value of the network security status through deep intelligent learning. Finally, we conclude that the artificial intelligence algorithm based on wavelet neural network can be used for power control system network security situation awareness. In actual work, it can predict the situation value for a period of time in the future and assist network security personnel in judgment and decision-making.


2013 ◽  
Vol 310 ◽  
pp. 557-559 ◽  
Author(s):  
Li Ji ◽  
Xiao Fei Lian

For a blow-off tunnel running, there is the large delay and lag issues. We build a mathematical model of the wind tunnel Mach number control by the test modeling method, then analyse the pros and cons of various control methods based on BP neural network control algorithm. Put forward genetic algorithm optimization neural network adaptive control method to solve the large inertia of the wind tunnel system, and large delay. A large number of simulation studies, run a variety of operating conditions for the wind tunnel simulation proved that the improved adaptive neural network PID control method is reasonable and effective.


Author(s):  
Tong Zhou ◽  
Yuheng Zhang ◽  
Shijin Duan ◽  
Yukui Luo ◽  
Xiaolin Xu

Sign in / Sign up

Export Citation Format

Share Document