scholarly journals Solving Logistics Distribution Center Location with Improved Cuckoo Search Algorithm

Author(s):  
Juan Li ◽  
Hong Lei ◽  
Gai-Ge Wang
Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 149 ◽  
Author(s):  
Juan Li ◽  
Dan-dan Xiao ◽  
Hong Lei ◽  
Ting Zhang ◽  
Tian Tian

Cuckoo search (CS) algorithm is a novel swarm intelligence optimization algorithm, which is successfully applied to solve some optimization problems. However, it has some disadvantages, as it is easily trapped in local optimal solutions. Therefore, in this work, a new CS extension with Q-Learning step size and genetic operator, namely dynamic step size cuckoo search algorithm (DMQL-CS), is proposed. Step size control strategy is considered as action in DMQL-CS algorithm, which is used to examine the individual multi-step evolution effect and learn the individual optimal step size by calculating the Q function value. Furthermore, genetic operators are added to DMQL-CS algorithm. Crossover and mutation operations expand search area of the population and improve the diversity of the population. Comparing with various CS algorithms and variants of differential evolution (DE), the results demonstrate that the DMQL-CS algorithm is a competitive swarm algorithm. In addition, the DMQL-CS algorithm was applied to solve the problem of logistics distribution center location. The effectiveness of the proposed method was verified by comparing with cuckoo search (CS), improved cuckoo search algorithm (ICS), modified chaos-enhanced cuckoo search algorithm (CCS), and immune genetic algorithm (IGA) for both 6 and 10 distribution centers.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Rui Chi ◽  
Yixin Su ◽  
Zhijian Qu ◽  
Xuexin Chi

The location selection of logistics distribution centers is a crucial issue in the modern urban logistics system. In order to achieve a more reasonable solution, an effective optimization algorithm is indispensable. In this paper, a new hybrid optimization algorithm named cuckoo search-differential evolution (CSDE) is proposed for logistics distribution center location problem. Differential evolution (DE) is incorporated into cuckoo search (CS) to improve the local searching ability of the algorithm. The CSDE evolves with a coevolutionary mechanism, which combines the Lévy flight of CS with the mutation operation of DE to generate solutions. In addition, the mutation operation of DE is modified dynamically. The mutation operation of DE varies under different searching stages. The proposed CSDE algorithm is tested on 10 benchmarking functions and applied in solving a logistics distribution center location problem. The performance of the CSDE is compared with several metaheuristic algorithms via the best solution, mean solution, and convergence speed. Experimental results show that CSDE performs better than or equal to CS, ICS, and some other metaheuristic algorithms, which reveals that the proposed CSDE is an effective and competitive algorithm for solving the logistics distribution center location problem.


2017 ◽  
Vol 116 ◽  
pp. 63-78 ◽  
Author(s):  
Geng Sun ◽  
Yanheng Liu ◽  
Ming Yang ◽  
Aimin Wang ◽  
Shuang Liang ◽  
...  

2018 ◽  
Vol 30 (4) ◽  
pp. 367-386 ◽  
Author(s):  
Liyang Xiao ◽  
Mahjoub Dridi ◽  
Amir Hajjam El Hassani ◽  
Wanlong Lin ◽  
Hongying Fei

Abstract In this study, we aim to minimize the total waiting time between successive treatments for inpatients in rehabilitation hospitals (departments) during a working day. Firstly, the daily treatment scheduling problem is formulated as a mixed-integer linear programming model, taking into consideration real-life requirements, and is solved by Gurobi, a commercial solver. Then, an improved cuckoo search algorithm is developed to obtain good quality solutions quickly for large-sized problems. Our methods are demonstrated with data collected from a medium-sized rehabilitation hospital in China. The numerical results indicate that the improved cuckoo search algorithm outperforms the real schedules applied in the targeted hospital with regard to the total waiting time of inpatients. Gurobi can construct schedules without waits for all the tested dataset though its efficiency is quite low. Three sets of numerical experiments are executed to compare the improved cuckoo search algorithm with Gurobi in terms of solution quality, effectiveness and capability to solve large instances.


Sign in / Sign up

Export Citation Format

Share Document