scholarly journals The Maupertuis Principle and Canonical Transformations of the Extended Phase Space

2001 ◽  
Vol 8 (1) ◽  
pp. 157-182 ◽  
Author(s):  
A V Tsiganov
Author(s):  
Flavio Mercati

This chapter explains in detail the current Hamiltonian formulation of SD, and the concept of Linking Theory of which (GR) and SD are two complementary gauge-fixings. The physical degrees of freedom of SD are identified, the simple way in which it solves the problem of time and the problem of observables in quantum gravity are explained, and the solution to the problem of constructing a spacetime slab from a solution of SD (and the related definition of physical rods and clocks) is described. Furthermore, the canonical way of coupling matter to SD is introduced, together with the operational definition of four-dimensional line element as an effective background for matter fields. The chapter concludes with two ‘structural’ results obtained in the attempt of finding a construction principle for SD: the concept of ‘symmetry doubling’, related to the BRST formulation of the theory, and the idea of ‘conformogeometrodynamics regained’, that is, to derive the theory as the unique one in the extended phase space of GR that realizes the symmetry doubling idea.


1993 ◽  
Vol 07 (19) ◽  
pp. 1263-1268
Author(s):  
H. DEKKER ◽  
A. MAASSEN VAN DEN BRINK

Turnover theory (of the escape Γ) à la Grabert will be based solely on Kramers' Fokker–Planck equation for activated rate processes. No recourse to a microscope model or Langevin dynamics will be made. Apart from the unstable mode energy E, the analysis requires new theoretical concepts such as a constrained Gaussian transformation (CGT) and dynamically extended phase space (EPS).


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Sadollah Nasiri ◽  
Samira Bahrami

Here we use the extended phase space formulation of quantum statistical mechanics proposed in an earlier work to define an extended lagrangian for Wigner's functions (WFs). The extended action defined by this lagrangian is a function of ordinary phase space variables. The reality condition of WFs is employed to quantize the extended action. The energy quantization is obtained as a direct consequence of the quantized action. The technique is applied to find the energy states of harmonic oscillator, particle in the box, and hydrogen atom as the illustrative examples.


Sign in / Sign up

Export Citation Format

Share Document