scholarly journals Numerical Simulation of Incompressible Viscous Flow Using an Implicit Fractional Step Method on Collocated Grid

Author(s):  
Song Li-wei ◽  
Wu Song-ping

2008 ◽  
Vol 575-578 ◽  
pp. 104-108
Author(s):  
Jie Yang ◽  
Yu Xin Ren ◽  
Shou Mei Xiong

In the numerical simulation of mold filling process, the calculation efficiency has been a key point for practical applications due to the complexity and thin-section of die castings. In current research work, a fractional step method was applied in the solution of the unsteady Navier-Stokes equations, which can be implemented with a single solution to the momentum/pressure equations at each time step. This method may avoid the decrease in efficiency induced by iteration. A water analog system was designed and developed to simulate the die casting process. The flow patterns were recorded by a high speed camera with a capturing rate of 500 frames per second. The simulation results were consistent with the experimental ones. Besides, the fluid flow patterns of several components were simulated by the fractional step and VOF algorithm, and the SOLA-VOF algorithm respectively. The simulation results showed that the combination of the fractional step method and VOF method can improve the computational efficiency to some extent in numerical simulation of mold filling process.





2012 ◽  
Vol 55 ◽  
pp. 57-69 ◽  
Author(s):  
Jean-Marc Hérard ◽  
Olivier Hurisse


2007 ◽  
Vol 46 (3) ◽  
pp. 388-395 ◽  
Author(s):  
Yohsuke Imai ◽  
Takayuki Aoki ◽  
Magdi Shoucri

Abstract Two explicit schemes for the numerical solution of the shallow-water equations are examined. The directional-splitting fractional-step method permits relatively large time steps without an iterative process by using a treatment based on the characteristics of the governing equations. The interpolated differential operator (IDO) scheme has fourth-order accuracy in time and space by using a Hermite interpolation function covering local domains, and accurate results are obtained with coarse meshes. It is shown that the two schemes are very efficient for hydrostatic meteorological models from the viewpoints of numerical accuracy and central processing unit time, and the fact that they are explicit makes them suitable for computers with parallel architecture.



2018 ◽  
Vol 129 ◽  
pp. 83-103 ◽  
Author(s):  
Tong Zhang ◽  
Yanxia Qian ◽  
JinYun Yuan


2000 ◽  
Author(s):  
J. Rafael Pacheco ◽  
Arturo Pacheco-Vega ◽  
Sigfrido Pacheco-Vega

Abstract A new approach for the solution of time-dependent calculations of buoyancy driven currents is presented. This method employs the idea that density variation can be pursued by using markers distributed in the flow field. The analysis based on the finite difference technique with the non-staggered grid fractional step method is used to solve the flow equations written in terms of primitive variables. The physical domain is transformed to a rectangle by means of a numerical mapping technique. The problems analyzed include two-fluid flow in a tank with sloping bottom and colliding density currents. The numerical experiments performed show that this approach is efficient and robust.



Sign in / Sign up

Export Citation Format

Share Document