scholarly journals A Low Power Design of Asynchronous SAR ADC Using DTMOS Technique

2017 ◽  
Vol 26 (05) ◽  
pp. 1750077 ◽  
Author(s):  
Anush Bekal ◽  
Shabi Tabassum ◽  
Manish Goswami

The work proposes an improved technique to design a low power 8-bit asynchronous successive approximation register (ASAR), an analog-to-digital converter (ADC). The proposed ASAR ADC consists of a comparator, ASAR (digital control logic block), and a capacitive-digital-to-analog convertor (C-DAC). The comparator is a preamplier-based improved positive feedback latch circuit which has a built-in sample and hold (S/H) functionality and saves an enormous amount of power. The implemented digital control logic block performing the successive approximation (SA) algorithm is totally unrestrained of the external clock pulse. The outputs from the comparator are given to a XOR logic whose outputs serve as an internally generated clock (ready signal) to trigger the digital control block. Hence, an external clock is not required to initiate the digital control block making its operation asynchronous. By implementing this, the ADC can circumvent the usage of an oversampled clock and can operate on a single low-speed sample clock. This, in turn, saves power and it cuts down the required resilience in sampling rates. The proposed ADC has been designed and simulated using UMC-0.18[Formula: see text][Formula: see text]m CMOS technology which dissipates 32.18[Formula: see text][Formula: see text]W power when operated on a single 1[Formula: see text]V power supply and achieves complete 8-bit conversion in 1.09[Formula: see text][Formula: see text]s. The relative accuracy of capacitor ratio, aperture jitter and FOM are 0.39[Formula: see text], 1.2[Formula: see text]ns and 125[Formula: see text]fJ/conversion-step, respectively.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1100
Author(s):  
Deeksha Verma ◽  
Khuram Shehzad ◽  
Danial Khan ◽  
Sung Jin Kim ◽  
Young Gun Pu ◽  
...  

A design of low-power 10-bit 1 MS/s asynchronous successive approximation register analog-to-digital converter (SAR ADC) is presented in this paper. To improve the linearity of the digital-to-analog converter (DAC) and energy efficiency, a common mode-based monotonic charge recovery (CMMC) switching technique is proposed. The proposed switching technique consumes only 63.75 CVREF2 switching energy, which is far less as compared to the conventional switching technique without dividing or adding additional switches. In addition, bootstrap switching is implemented to ensure enhanced linearity. To reduce the power consumption from the comparator, a dynamic latch comparator with a self-comparator clock generation circuit is implemented. The proposed prototype of the SAR ADC is implemented in a 55 nm CMOS (complementary metal-oxide-semiconductor) process. The proposed architecture achieves a figure of merit (FOM) of 17.4 fJ/conversion, signal-to-noise distortion ratio (SNDR) of 60.39 dB, and an effective number of bits (ENOB) of 9.74 bits with a sampling rate of 1 MS/s at measurement levels. The implemented SAR ADC consumes 14.8 µW power at 1 V power supply.


Author(s):  
Deeksha Verma ◽  
Hye Yeong Kang ◽  
Khuram Shehzad ◽  
Muhammad Riaz ur Rehman ◽  
Kang-Yoon Lee

Sign in / Sign up

Export Citation Format

Share Document