scholarly journals DeepEye: A Surveillance System Using Deep Learning for Intruder Detection in SmartHome Remote App

Author(s):  
Vibhavari B Rao

The crime rates today can inevitably put a civilian's life in danger. While consistent efforts are being made to alleviate crime, there is also a dire need to create a smart and proactive surveillance system. Our project implements a smart surveillance system that would alert the authorities in real-time when a crime is being committed. During armed robberies and hostage situations, most often, the police cannot reach the place on time to prevent it from happening, owing to the lag in communication between the informants of the crime scene and the police. We propose an object detection model that implements deep learning algorithms to detect objects of violence such as pistols, knives, rifles from video surveillance footage, and in turn send real-time alerts to the authorities. There are a number of object detection algorithms being developed, each being evaluated under the performance metric mAP. On implementing Faster R-CNN with ResNet 101 architecture we found the mAP score to be about 91%. However, the downside to this is the excessive training and inferencing time it incurs. On the other hand, YOLOv5 architecture resulted in a model that performed very well in terms of speed. Its training speed was found to be 0.012 s / image during training but naturally, the accuracy was not as high as Faster R-CNN. With good computer architecture, it can run at about 40 fps. Thus, there is a tradeoff between speed and accuracy and it's important to strike a balance. We use transfer learning to improve accuracy by training the model on our custom dataset. This project can be deployed on any generic CCTV camera by setting up a live RTSP (real-time streaming protocol) and streaming the footage on a laptop or desktop where the deep learning model is being run.


2022 ◽  
pp. 88-102
Author(s):  
Basetty Mallikarjuna ◽  
Anusha D. J. ◽  
Sethu Ram M. ◽  
Munish Sabharwal

An effective video surveillance system is a challenging task in the COVID-19 pandemic. Building a model proper way of wearing a mask and maintaining the social distance minimum six feet or one or two meters by using CNN approach in the COVID-19 pandemic, the video surveillance system works with the help of TensorFlow, Keras, Pandas, which are libraries used in Python programming scripting language used in the concepts of deep learning technology. The proposed model improved the CNN approach in the area of deep learning and named as the Ram-Laxman algorithm. The proposed model proved to build the optimized approach, the convolutional layers grouped as ‘Ram', and fully connected layers grouped as ‘Laxman'. The proposed system results convey that the Ram-Laxman model is easy to implement in the CCTV footage.


Author(s):  
Asantha Thilina ◽  
Shakthi Attanayake ◽  
Sacith Samarakoon ◽  
Dahami Nawodya ◽  
Lakmal Rupasinghe ◽  
...  

2020 ◽  
Vol 32 ◽  
pp. 03011
Author(s):  
Divya Kapil ◽  
Aishwarya Kamtam ◽  
Akhil Kedare ◽  
Smita Bharne

Surveillance systems are used for the monitoring the activities directly or indirectly. Most of the surveillance system uses the face recognition techniques to monitor the activities. This system builds the automated contemporary biometric surveillance system based on deep learning. The application of the system can be used in various ways. The face prints of the persons will be stored inside the database with relevant statistics and does the face recognition. When any unknown face is recognized then alarm will ring so one can alert the security systems and in addition actions will be taken. The system learns changes while detecting faces automatically using deep learning and gain correct accuracy in face recognition. A deep learning method including Convolutional Neural Network (CNN) is having great significance in the area of image processing. This system can be applicable to monitor the activities for the housing society premises.


2021 ◽  
Author(s):  
F. Kumiawan ◽  
N. D. W. Cahyani ◽  
G. B. Satrya

Sign in / Sign up

Export Citation Format

Share Document