scholarly journals Atomic kernels as waves and catastrophes

2021 ◽  
Vol 1 (2) ◽  
pp. 062-067
Author(s):  
Gudrun Kalmbach HE

The presentation of atomic kerrnels as particles requires for the physics duality principle that they get a wave description. This is due to presenting the SU (3) GellMann matrix space by octonians which are obtained by doubling the spacetime quaternions. Their multiplication table is different from the SU (3) matrices. The third presentation of this space is a complex 4-dimensional space where the real spacetime coordinates of a 4-dimensional Euclidean Hilbert space R4 are extended to C4. For getting from Deuteron Cooper pairs NP of a neutron and proton atomic kernels AK, the wave package superpositions for AK need the mass defect of neutrons where kg is changed to inner speeds or interaction energies. For kg octonians have a GF measuring base triple as Gleason operator. Using a projective geometrical norming, C4 is normed to CP³, a projective 3-dimensional space. Its cell C³ has spacetime coordinates C², extended by an Einstein energy plane z3 = (m,f), m mass, f = 1/∆t frequency where mass can be transformed into f by using mc² = hf. If C³ is presented as a real space R6, it can be real projective normed to a real projective space P5 for the field presentation of AK. As field the NP‘s have then a common group speed for AK wave packages superpositions with which AK moves in spacetime C² and also a presentation as a Ψ wave. As probability distribution where they can be energetically found in space serves Ψ* Ψ.

2009 ◽  
Author(s):  
Xiu Jianjuan ◽  
Li Yuli ◽  
He You ◽  
Wang Guohong

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tomoya Miura ◽  
Shun Maeta

Abstract We show that any triharmonic Riemannian submersion from a 3-dimensional space form into a surface is harmonic. This is an affirmative partial answer to the submersion version of the generalized Chen conjecture. Moreover, a non-existence theorem for f -biharmonic Riemannian submersions is also presented.


2021 ◽  
Author(s):  
Ryan Edward O'Donnell ◽  
Kyrie Murawski ◽  
Ella Herrmann ◽  
Jesse Wisch ◽  
Garrett D. Sullivan ◽  
...  

There have been conflicting findings on the degree to which exogenous/reflexive visual attention is selective for depth, and this issue has important implications for attention models. Previous findings have attempted to find depth-based cueing effects on such attention using reaction time measures for stimuli presented in stereo goggles with a display screen. Results stemming from such approaches have been mixed, depending on whether target/distractor discrimination was required. To help clarify the existence of such depth effects, we have developed a paradigm that measures accuracy rather than reaction time in an immersive virtual-reality environment, providing a more appropriate context of depth. Four modified Posner Cueing paradigms were run to test for depth-specific attentional selectivity. Participants fixated a cross while attempting to identify a rapidly masked letter that was preceded by a cue that could be valid in depth and side, depth only, or side only. In Experiment 1, a potent cueing effect was found for side validity and a weak effect was found for depth. Experiment 2 controlled for differences in cue and target sizes when presented at different depths, which caused the depth validity effect to disappear entirely even though participants were explicitly asked to report depth and the difference in virtual depth was extreme (20 vs 300 meters). Experiments 3a and 3b brought the front depth plane even closer (1 m) to maximize effects of binocular disparity, but no reliable depth cueing validity was observed. Thus, it seems that rapid/exogenous attention pancakes 3-dimensional space into a 2-dimensional reference frame.


2013 ◽  
Vol 470 ◽  
pp. 767-771
Author(s):  
L. Zhang ◽  
Shu Tang Liu

Many real complex phenomena are related with Weierstrass-Mandelbrot function (WMF). Most researches focus on the systems as parameters fixed, such as calculations of its different fractal dimensions or the statistical characteristics of its generalized form and so on. Moreover, real systems always change according to different environments, so that to study the dynamical behavior of these systems as parameters change is important. However, there is few results about this aim. In this paper, we propose simulated results for the effects of parameters changeably on the graph of WMF in higher dimensional space. In addition, the relationships between the Hurst exponent of WMF and its parameters dynamically in 2-and 3-dimensional spaces are also given.


2008 ◽  
Vol 41 (6) ◽  
pp. 1182-1186 ◽  
Author(s):  
Ivan Orlov ◽  
Lukas Palatinus ◽  
Gervais Chapuis

The symmetry of a commensurately modulated crystal structure can be described in two different ways: in terms of a conventional three-dimensional space group or using the superspace concept in (3 +d) dimensions. The three-dimensional space group is obtained as a real-space section of the (3 +d) superspace group. A complete network was constructed linking (3 + 1) superspace groups and the corresponding three-dimensional space groups derived from rational sections. A database has been established and is available at http://superspace.epfl.ch/finder/. It is particularly useful for finding common superspace groups for various series of modular (`composition-flexible') structures and phase transitions. The use of the database is illustrated with examples from various fields of crystal chemistry.


Sign in / Sign up

Export Citation Format

Share Document