scholarly journals Kestabilan Global Endemik Model Epidemi SEIR

2014 ◽  
Vol 9 (2) ◽  
pp. 52
Author(s):  
Roni Tri Putra ◽  
Sukatik - ◽  
Sri Nita ◽  
Yandraini Yunida

In this paper, it will be studied global stability endemic of equilibrium points of  a SEIR model with infectious force in latent, infected and immune period. From the model it will be found investigated the existence and its stability of points its equilibrium. The global stability of equilibrium points is depending on the value of the basic reproduction number  If   there is a unique endemic equilibrium which is globally asymptotically stable.

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2016 ◽  
Vol 09 (06) ◽  
pp. 1650082 ◽  
Author(s):  
Lili Wang ◽  
Rui Xu

In this paper, an SEIR epidemic model with vaccination is formulated. The results of our mathematical analysis indicate that the basic reproduction number plays an important role in studying the dynamics of the system. If the basic reproduction number is less than unity, it is shown that the disease-free equilibrium is globally asymptotically stable by comparison arguments. If it is greater than unity, the system is permanent and there is a unique endemic equilibrium. In this case, sufficient conditions are established to guarantee the global stability of the endemic equilibrium by the theory of the compound matrices. Numerical simulations are presented to illustrate the main results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
F. Talay Akyildiz ◽  
Fehaid Salem Alshammari

AbstractThis paper investigates a new model on coronavirus-19 disease (COVID-19), that is complex fractional SIR epidemic model with a nonstandard nonlinear incidence rate and a recovery, where derivative operator with Mittag-Leffler kernel in the Caputo sense (ABC). The model has two equilibrium points when the basic reproduction number $R_{0} > 1$ R 0 > 1 ; a disease-free equilibrium $E_{0}$ E 0 and a disease endemic equilibrium $E_{1}$ E 1 . The disease-free equilibrium stage is locally and globally asymptotically stable when the basic reproduction number $R_{0} <1$ R 0 < 1 , we show that the endemic equilibrium state is locally asymptotically stable if $R_{0} > 1$ R 0 > 1 . We also prove the existence and uniqueness of the solution for the Atangana–Baleanu SIR model by using a fixed-point method. Since the Atangana–Baleanu fractional derivative gives better precise results to the derivative with exponential kernel because of having fractional order, hence, it is a generalized form of the derivative with exponential kernel. The numerical simulations are explored for various values of the fractional order. Finally, the effect of the ABC fractional-order derivative on suspected and infected individuals carefully is examined and compared with the real data.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650068 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Sehra Khan ◽  
Saeed Islam

This study considers SEIVR epidemic model with generalized nonlinear saturated incidence rate in the host population horizontally to estimate local and global equilibriums. By using the Routh–Hurwitz criteria, it is shown that if the basic reproduction number [Formula: see text], the disease-free equilibrium is locally asymptotically stable. When the basic reproduction number exceeds the unity, then the endemic equilibrium exists and is stable locally asymptotically. The system is globally asymptotically stable about the disease-free equilibrium if [Formula: see text]. The geometric approach is used to present the global stability of the endemic equilibrium. For [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, the numerical results are presented to justify the mathematical results.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


2016 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Roni Tri Putra ◽  
Sukatik - ◽  
Sri Nita

In this paper, it will be studied local stability of equilibrium points of  a SEIR epidemic model with infectious force in latent, infected and immune period. From the model it will be found investigated the existence and its stability of points its equilibrium by Hurwitz matrices. The local stability of equilibrium points is depending on the value of the basic reproduction number  If   the disease free equilibrium is local asymptotically stable.


Author(s):  
Necibe Tuncer ◽  
Sunil Giri

In this paper we the study of dynamics of time since infection structured vector born model with the direct transmission. We use standard incidence term to model the new infections. We analyze the corresponding system of partial di erential equation and obtain an explicit formula for the basic reproduction number R0. The diseases-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number is less than one, R0 < 1. Endemic equilibrium exists and is locally asymptotically stable when R0 > 1. The disease will persist at the endemic equilibrium whenever the basic reproduction number is greater than one.


2021 ◽  
Vol 4 (2) ◽  
pp. 106-124
Author(s):  
Raqqasyi Rahmatullah Musafir ◽  
Agus Suryanto ◽  
Isnani Darti

We discuss the dynamics of new COVID-19 epidemic model by considering asymptomatic infections and the policies such as quarantine, protection (adherence to health protocols), and vaccination. The proposed model contains nine subpopulations: susceptible (S), exposed (E), symptomatic infected (I), asymptomatic infected (A), recovered (R), death (D), protected (P), quarantined (Q), and vaccinated (V ). We first show the non-negativity and boundedness of solutions. The equilibrium points, basic reproduction number, and stability of equilibrium points, both locally and globally, are also investigated analytically. The proposed model has disease-free equilibrium point and endemic equilibrium point. The disease-free equilibrium point always exists and is globally asymptotically stable if basic reproduction number is less than one. The endemic equilibrium point exists uniquely and is globally asymptotically stable if the basic reproduction number is greater than one. These properties have been confirmed by numerical simulations using the fourth order Runge-Kutta method. Numerical simulations show that the disease transmission rate of asymptomatic infection, quarantine rates, protection rate, and vaccination rates affect the basic reproduction number and hence also influence the stability of equilibrium points.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
El Mehdi Lotfi ◽  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

The aim of this paper is to study the dynamics of a reaction-diffusion SIR epidemic model with specific nonlinear incidence rate. The global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the eradication of disease from population. When the basic reproduction number is greater than unity, then disease-free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists in the population. Numerical simulations are presented to illustrate our theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Hai-Feng Huo ◽  
Li-Xiang Feng

An epidemic model with incomplete treatment and vaccination for the newborns and susceptibles is constructed. We establish that the global dynamics are completely determined by the basic reproduction numberR0. IfR0≤1, then the disease-free equilibrium is globally asymptotically stable. IfR0>1, the endemic equilibrium is globally asymptotically stable. Some numerical simulations are also given to explain our conclusions.


Sign in / Sign up

Export Citation Format

Share Document