Communication in Biomathematical Sciences
Latest Publications


TOTAL DOCUMENTS

45
(FIVE YEARS 35)

H-INDEX

1
(FIVE YEARS 1)

Published By The Institute For Research And Community Services Itb

2549-2896

2021 ◽  
Vol 4 (2) ◽  
pp. 106-124
Author(s):  
Raqqasyi Rahmatullah Musafir ◽  
Agus Suryanto ◽  
Isnani Darti

We discuss the dynamics of new COVID-19 epidemic model by considering asymptomatic infections and the policies such as quarantine, protection (adherence to health protocols), and vaccination. The proposed model contains nine subpopulations: susceptible (S), exposed (E), symptomatic infected (I), asymptomatic infected (A), recovered (R), death (D), protected (P), quarantined (Q), and vaccinated (V ). We first show the non-negativity and boundedness of solutions. The equilibrium points, basic reproduction number, and stability of equilibrium points, both locally and globally, are also investigated analytically. The proposed model has disease-free equilibrium point and endemic equilibrium point. The disease-free equilibrium point always exists and is globally asymptotically stable if basic reproduction number is less than one. The endemic equilibrium point exists uniquely and is globally asymptotically stable if the basic reproduction number is greater than one. These properties have been confirmed by numerical simulations using the fourth order Runge-Kutta method. Numerical simulations show that the disease transmission rate of asymptomatic infection, quarantine rates, protection rate, and vaccination rates affect the basic reproduction number and hence also influence the stability of equilibrium points.


2021 ◽  
Vol 4 (2) ◽  
pp. 93-105
Author(s):  
Reuben Iortyer Gweryina ◽  
Chinwendu Emilian Madubueze ◽  
Martins Afam Nwaokolo

In this paper, a mathematical model for COVID-19 pandemic that spreads through horizontal transmission in the presence of exposed immigrants is studied. The model has equilibrium points, notably, COVID-19-free equilibrium and COVID-19-endemic equilibrium points. The model exhibits a basic reproduction number, R0 which determines the elimination and persistence of the disease. It was found that when R0 < 1, then the equilibrium becomes locally asymptotically stable and endemic equilibrium does not exists. However, when R0 > 1, the equilibrium is found to be stable globally. This implies that continuous mixing of exposed immigrants with the susceptible population will make the eradication of COVID-19 difficult and endemic in the community. The system is also proved qualitatively to experience transcritical bifurcation close to the COVID-19-free equilibrium at the point R0 = 1. Numerically, the model is used to investigate the impact of certain other relevant parameters on the spread of COVID-19 and how to curtail their effect.


2021 ◽  
Vol 4 (2) ◽  
pp. 81-92
Author(s):  
Afrina Andriani br Sebayang ◽  
Enrico Antonius ◽  
Elisabeth Victoria Pravitama ◽  
Jonathan Irianto ◽  
Shannen Widijanto ◽  
...  

The Coronavirus disease 2019 (Covid-19) has led all countries around the world to the unpredicted situation. It is such a crucial to investigate novel approaches in predicting the future behaviour of the outbreak. In this paper, Google trend analysis will be employed to analyse the seek pattern of Covid-19 cases. The first method to investigate the seek information behaviour related to Covid-19 outbreak is using lag-correlation between two time series data per regional data. The second method is used to encounter the cause-effect relation between time series data. We apply statistical methods for causal inference in epidemics. Our focus is on predicting the causal-effect relationship between information-seeking patterns and Google search in the Covid-19 pandemic. We propose the using of Granger Causality method to analyse the causal relation between incidence data and Google Trend Data.


2021 ◽  
Vol 4 (2) ◽  
pp. 125-137
Author(s):  
Dipo Aldila ◽  
Arthana Islamilova ◽  
Sarbaz H.A. Khosnaw ◽  
Bevina D. Handari ◽  
Hengki Tasman

Atherosclerosis is a non-communicable disease (NCDs) which appears when the blood vessels in the human body become thick and stiff. The symptoms range from chest pain, sudden numbness in the arms or legs, temporary loss of vision in one eye, or even kidney failure, which may lead to death. Treatment in cases with severe symptoms requires surgery, in which the number of doctors or hospitals is limited in some countries, especially countries with low health levels. This article aims to propose a mathematical model to understand the impact of limited hospital resources on the success of the control program of atherosclerosis spreads. The model was constructed based on a deterministic model, where the hospitalization rate is defined as a time-dependent saturated function concerning the number of infected individuals. The existence and stability of all possible equilibrium points were shown analytically and numerically, along with the basic reproduction number. Our analysis indicates that our model may exhibit various types of bifurcation phenomena, such as forward bifurcation, backward bifurcation, or a forward bifurcation with hysteresis depending on the value of hospitalization saturation parameter and the infection rate for treated infected individuals. These phenomenon triggers a complex and tricky control program of atherosclerosis. A forward bifurcation with hysteresis auses a possible condition of having more than one stable endemic equilibrium when the basic reproduction number is larger than one, but close to one. The more significant value of hospitalization saturation rate or the infection rate for treated infected individuals increases the possibility of the stable endemic equilibrium point even though the disease-free equilibrium is stable. Furthermore, the Pontryagin Maximum Principle was used to characterize the optimal control problem for our model. Based on the results of our analysis, we conclude that atherosclerosis control interventions should prioritize prevention efforts over endemic reduction scenarios to avoid high intervention costs. In addition, the government also needs to pay great attention to the availability of hospital services for this disease to avoid the dynamic complexity of the spread of atherosclerosis in the field.


2021 ◽  
Vol 4 (2) ◽  
pp. 138-151
Author(s):  
Hilda Fahlena ◽  
Widya Oktaviana ◽  
Farida Farida ◽  
Sudirman Sudirman ◽  
Nuning Nuraini ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic continues to spread aggressively worldwide, infecting more than 170 million people with confirmed cases, including more than 3 million deaths. This pandemic is increasingly exacerbating the burden on tropical and subtropical regions of the world due to the pre-existing dengue fever, which has become endemic for a longer period in the same region. Co-circulation dengue and COVID-19 cases have been found and confirmed in several countries. In this paper, a deterministic model for the coendemic of COVID-19 and dengue is proposed. The basic reproduction ratio is obtained, which is related to the four equilibria, disease-free, endemic-COVID-19, endemic-dengue, and coendemic equilibria. Stability analysis is done for the first three equilibria. Furthermore, a condition for coexistence equilibrium is obtained, which gives a condition for bifurcation analysis. Numerical simulations were carried out to obtain a stable limit-cycle resulting from two Hopf bifurcation points with dengue transmission rate and COVID-19 transmission rate as the bifurcation parameter, representing a stable periodic coexistence of dengue and COVID-19 transmission. We identify the period of limit cycle decreases after reaching the maximum value.


2021 ◽  
Vol 4 (1) ◽  
pp. 65-80
Author(s):  
Meksianis Z. Ndii

Strategies for reducing dengue incidence are by minimizing the contact between mosquitoes and human or the use of vaccine. However, the candidate of dengue is not perfect and potentially results in more secondary infection cases.This leads to the question which strategy should be decided by individuals to reduce the chance for being infected by dengue. A game-dynamic modeling framework by coupling epidemic and behavior model has been constructed to study the effects of human decision making behavior on dengue transmission dynamics. We also consider strategies as time-dependent controls and estimate the parameter values against data of dengue incidence in Kupang city, Indonesia. Parameter estimation gives the reproduction number of 1.17 which indicates the possibility of outbreak occurrence. When the efficacy of reduced contact with mosquitoes is low, the use of vaccination is the best option to reduce dengue incidence. The efficacy of reduced contact with mosquitoes should be at high level to get higher reduction in dengue incidence if no vaccine is available yet. An optimal control approach suggests that a higher level of vaccination rate and the reduced contact with mosquitoes is required to reach optimal reduction in dengue incidence. However, solutions from epidemiological-behavior model showed that individuals are likely to choose one strategy only which has higher cost and the probability of perceived efficacy. The implementation of vaccination helps in reducing dengue incidence. However, understanding the effects of dengue vaccine on secondary infections is required before the delivery of such intervention.


2021 ◽  
Vol 4 (1) ◽  
pp. 46-64
Author(s):  
Muhammad Afief Balya ◽  
Bunga Oktaviani Dewi ◽  
Faza Indah Lestari ◽  
Gayatri Ratu ◽  
Hanna Rosuliyana ◽  
...  

In this article, we propose and analyze a mathematical model of COVID-19 transmission among a closed population, with social awareness and rapid test intervention as the control variables. For this, we have constructed the model using a compartmental system of the ordinary differential equations. Dynamical analysis regarding the existence and local stability of equilibrium points is conducted rigorously. Our analysis shows that COVID-19 will disappear from the population if the basic reproduction number is less than one, and persist if the basic reproduction number is greater than one. In addition, we have shown a trans-critical bifurcation phenomenon based on our proposed model when the basic reproduction number equals one. From the elasticity analysis, we have observed that rapid testing is more promising in reducing the basic reproduction number as compared to a media campaign to improve social awareness on COVID-19. Using the Pontryagin Maximum Principle (PMP), the characterization of our optimal control problem is derived analytically and solved numerically using the forward-backward iterative algorithm. Our cost-effectiveness analysis shows that using rapid test and media campaigns partially are the best intervention strategy to reduce the number of infected humans with the minimum cost of intervention. If the intervention is to be implemented as a single intervention, then using solely the rapid test is a more promising and low-cost option in reducing the number of infected individuals vis-a-vis a media campaign to increase social awareness as a single intervention.


2021 ◽  
Vol 3 (2) ◽  
pp. 114-126
Author(s):  
Sudi Mungkasi

We consider a SEIR model for the spread (transmission) of an infectious disease. The model has played an important role due to world pandemic disease spread cases. Our contributions in this paper are three folds. Our first contribution is to provide successive approximation and variational iteration methods to obtain analytical approximate solutions to the SEIR model. Our second contribution is to prove that for solving the SEIR model, the variational iteration and successive approximation methods are identical when we have some particular values of Lagrange multipliers in the variational iteration formulation. Third, we propose a new multistage-analytical method for solving the SEIR model. Computational experiments show that the successive approximation and variational iteration methods are accurate for small size of time domain. In contrast, our proposed multistage-analytical method is successful to solve the SEIR model very accurately for large size of time domain. Furthermore, the order of accuracy of the multistage-analytical method can be made higher simply by taking more number of successive iterations in the multistage evolution.


2021 ◽  
Vol 3 (2) ◽  
pp. 148-156
Author(s):  
Vania Mene Risriani ◽  
Tjandra Anggraeni ◽  
Nuning Nuraini

Identification of post-mortem interval started from the time when the dead body was found. The main question is to identify the time of death. In reality, the task is complicated since many local factors are involved in the process of decomposition. In most cases, the decomposition process is done by certain local insects that consume the biomass completely. This study uses a mathematical model for the post-mortem interval involving diptera and rabbit corpses as the biomass, based on experimental data from references. We formulate a type of logistic model with decaying carrying capacity only with diptera. The post-mortem interval is shown as the end period of consumption when larvae have entirely consumed the biomass. It is shown from the simulation that the decomposition lasts for 235 hours. The diptera are shown to disappear completely, leaving the remaining corpse after 120 hours.


2021 ◽  
Vol 3 (2) ◽  
pp. 101-113
Author(s):  
Amit Kumar Chakraborty ◽  
M. A. Haque ◽  
M. A. Islam

Dengue is one of the major health problems in Bangladesh and many people are died in recent years due to the severity of this disease. Therefore, in this paper, a SIRS model for the human and SI model for vector population with saturated incidence rate and constant treatment function has been presented to describe the transmission of dengue. The equilibrium points and the basic reproduction number have been computed. The conditions which lead the disease free equilibrium and the endemic equilibrium have been determined. The local stability for the equilibrium points has been established based on the eigenvalues of the Jacobian matrix and the global stability has been analyzed by using the Lyapunov function theory. It is found that the stability of equilibrium points can be controlled by the reproduction number. In order to calculate the infection rate, data for infected human populations have been collected from several health institutions of Bangladesh. Numerical simulations of various compartments have been generated using MATLAB to investigate the influence of the key parameters for the transmission of the disease and to support the analytical results. The effect of treatment function over the infected compartment has been illustrated. The sensitivity of the reproduction number concerning the parameters of the model has been analyzed. Finally, the most sensitive parameter that has the highest effect over reproduction number has been identified.


Sign in / Sign up

Export Citation Format

Share Document