seir model
Recently Published Documents


TOTAL DOCUMENTS

454
(FIVE YEARS 364)

H-INDEX

20
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Jan Maciejowski ◽  
Robert Rowthorn ◽  
Scott Sheffield ◽  
David Vines ◽  
Anne Williamson
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261236
Author(s):  
Cong Yang ◽  
Yali Yang ◽  
Yang Li

In the past year, the global epidemic situation is still not optimistic, showing a trend of continuous expansion. With the research and application of vaccines, there is an urgent need to develop some optimal vaccination strategies. How to make a reasonable vaccination strategy to determine the priority of vaccination under the limited vaccine resources to control the epidemic and reduce human casualties? We build a dynamic model with vaccination which is extended the classical SEIR model. By fitting the epidemic data of three countries—China, Brazil, Indonesia, we have evaluated age-specific vaccination strategy for the number of infections and deaths. Furthermore, we have evaluated the impact of age-specific vaccination strategies on the number of the basic reproduction number. At last, we also have evaluated the different age structure of the vaccination priority. It shows that giving priority to vaccination of young people can control the number of infections, while giving priority to vaccination of the elderly can greatly reduce the number of deaths in most cases. Furthermore, we have found that young people should be mainly vaccinated to reduce the number of infections. When the emphasis is on reducing the number of deaths, it is important to focus vaccination on the elderly. Simulations suggest that appropriate age-specific vaccination strategies can effectively control the epidemic, both in terms of the number of infections and deaths.


2021 ◽  
Author(s):  
Peter Carl

<p>For directly transmissible infectious diseases, seasonality in the course of epidemics may manifest in four major ways: susceptibility of the hosts, their individual and collective behavior, transmissibility of the pathogen, and survival of the latter under evolving environmental conditions. Mechanisms and concepts are not finally settled, notably in a pandemic setting. Climatic seasonality by itself is an aggregate, structured phenomenon that provides a spatially distributed background to the epidemic outbreak and its evolution at multiple timescales. Using advanced methods of data and systems analysis, including epidemiological and climate modeling, the RKI data of the COVID-19 epidemic curve for Berlin and a five-parameter climate data set of the nearby station Lindenberg (Mark) are analyzed in daily resolution over the period March 2020 to October 2021. Aimed to identify extrinsic impacts due to organized intraseasonal climate dynamics, as seen in sunshine duration and surface climate (pressure, temperature, humidity, wind), on intrinsic dynamics of the epidemic system, an established (SEIR) model of the latter and modifications thereof have been subjected to in-depth studies with a view on both genesis and timing of epidemic waves and their potential synchronization with climatic background dynamics. Starting with a case study for the spring 2020 period of shutdown, which unveils remarkable synchronies with the seasonal transition, estimates are given and applied to the follow-up period of individual and combined impacts of climate variables on the SEIR model in different oscillatory (non-equilibrium, lately endemic) regimes of operation.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261330
Author(s):  
James Thompson ◽  
Stephen Wattam

Coronavirus disease 2019 (COVID-19) is an infectious disease of humans caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first case was identified in China in December 2019 the disease has spread worldwide, leading to an ongoing pandemic. In this article, we present an agent-based model of COVID-19 in Luxembourg, and use it to estimate the impact, on cases and deaths, of interventions including testing, contact tracing, lockdown, curfew and vaccination. Our model is based on collation, with agents performing activities and moving between locations accordingly. The model is highly heterogeneous, featuring spatial clustering, over 2000 behavioural types and a 10 minute time resolution. The model is validated against COVID-19 clinical monitoring data collected in Luxembourg in 2020. Our model predicts far fewer cases and deaths than the equivalent equation-based SEIR model. In particular, with R0 = 2.45, the SEIR model infects 87% of the resident population while our agent-based model infects only around 23% of the resident population. Our simulations suggest that testing and contract tracing reduce cases substantially, but are less effective at reducing deaths. Lockdowns are very effective although costly, while the impact of an 11pm-6am curfew is relatively small. When vaccinating against a future outbreak, our results suggest that herd immunity can be achieved at relatively low coverage, with substantial levels of protection achieved with only 30% of the population fully immune. When vaccinating in the midst of an outbreak, the challenge is more difficult. In this context, we investigate the impact of vaccine efficacy, capacity, hesitancy and strategy. We conclude that, short of a permanent lockdown, vaccination is by far the most effective way to suppress and ultimately control the spread of COVID-19.


2021 ◽  
Author(s):  
Xiaoping Liu

The Susceptible-Infectious-Recovered (SIR) and SIR derived epidemic models have been commonly used to analyze the spread of infectious diseases. The underlying assumption in these models, such as Susceptible-Exposed-Infectious-Recovered (SEIR) model, is that the change in variables E, I or R at time t is dependent on a fraction of E and I at time t. This means that after exposed on a day, this individual may become contagious or even recover on the same day. However, the real situation is different: an exposed individual will become infectious after a latent period (l) and then recover after an infectious period (i). In this study, we proposed a new SEIR model based on the latent period-infectious period chronological order (Liu X., Results Phys. 2021; 20:103712). An analytical solution to equations of this new SEIR model was derived. From this new SEIR model, we obtained a propagated curve of infectious cases under conditions l>i. Similar propagated epidemic curves were reported in literature. However, the conventional SEIR model failed to simulate the propagated epidemic curves under the same conditions. For l<i, the new SEIR models generated bell-shaped curves for infectious cases, and the curve is near symmetrical to the vertical line passing the curve peak. This characteristic can be found in many epidemic curves of daily COVID-19 cases reported from different countries. However, the curve generated from the conventional SEIR model is a right-skewed bell-shaped curve. An example for applying the analytical solution of the new SEIR model equations to simulate the reported daily COVID-19 cases was also given in this paper.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260632
Author(s):  
Fatima-Zahra Jaouimaa ◽  
Daniel Dempsey ◽  
Suzanne Van Osch ◽  
Stephen Kinsella ◽  
Kevin Burke ◽  
...  

Strategies adopted globally to mitigate the threat of COVID–19 have primarily involved lockdown measures with substantial economic and social costs with varying degrees of success. Morbidity patterns of COVID–19 variants have a strong association with age, while restrictive lockdown measures have association with negative mental health outcomes in some age groups. Reduced economic prospects may also afflict some age cohorts more than others. Motivated by this, we propose a model to describe COVID–19 community spread incorporating the role of age-specific social interactions. Through a flexible parameterisation of an age-structured deterministic Susceptible Exposed Infectious Removed (SEIR) model, we provide a means for characterising different forms of lockdown which may impact specific age groups differently. Social interactions are represented through age group to age group contact matrices, which can be trained using available data and are thus locally adapted. This framework is easy to interpret and suitable for describing counterfactual scenarios, which could assist policy makers with regard to minimising morbidity balanced with the costs of prospective suppression strategies. Our work originates from an Irish context and we use disease monitoring data from February 29th 2020 to January 31st 2021 gathered by Irish governmental agencies. We demonstrate how Irish lockdown scenarios can be constructed using the proposed model formulation and show results of retrospective fitting to incidence rates and forward planning with relevant “what if / instead of” lockdown counterfactuals. Uncertainty quantification for the predictive approaches is described. Our formulation is agnostic to a specific locale, in that lockdown strategies in other regions can be straightforwardly encoded using this model.


Author(s):  
Fernando A. Inthamoussou ◽  
Fernando Valenciaga ◽  
Sebastián Núñez ◽  
Fabricio Garelli
Keyword(s):  

2021 ◽  
Vol 17 (12) ◽  
pp. e1009652
Author(s):  
Lee Benson ◽  
Ross S. Davidson ◽  
Darren M. Green ◽  
Andrew Hoyle ◽  
Mike R. Hutchings ◽  
...  

Variants of the susceptible-infected-removed (SIR) model of Kermack & McKendrick (1927) enjoy wide application in epidemiology, offering simple yet powerful inferential and predictive tools in the study of diverse infectious diseases across human, animal and plant populations. Direct transmission models (DTM) are a subset of these that treat the processes of disease transmission as comprising a series of discrete instantaneous events. Infections transmitted indirectly by persistent environmental pathogens, however, are examples where a DTM description might fail and are perhaps better described by models that comprise explicit environmental transmission routes, so-called environmental transmission models (ETM). In this paper we discuss the stochastic susceptible-exposed-infected-removed (SEIR) DTM and susceptible-exposed-infected-removed-pathogen (SEIR-P) ETM and we show that the former is the timescale separation limit of the latter, with ETM host-disease dynamics increasingly resembling those of a DTM when the pathogen’s characteristic timescale is shortened, relative to that of the host population. Using graphical posterior predictive checks (GPPC), we investigate the validity of the SEIR model when fitted to simulated SEIR-P host infection and removal times. Such analyses demonstrate how, in many cases, the SEIR model is robust to departure from direct transmission. Finally, we present a case study of white spot disease (WSD) in penaeid shrimp with rates of environmental transmission and pathogen decay (SEIR-P model parameters) estimated using published results of experiments. Using SEIR and SEIR-P simulations of a hypothetical WSD outbreak management scenario, we demonstrate how relative shortening of the pathogen timescale comes about in practice. With atttempts to remove diseased shrimp from the population every 24h, we see SEIR and SEIR-P model outputs closely conincide. However, when removals are 6-hourly, the two models’ mean outputs diverge, with distinct predictions of outbreak size and duration.


Sign in / Sign up

Export Citation Format

Share Document