scholarly journals Dynamics of a vector-borne model with direct transmission and age of infection.

Author(s):  
Necibe Tuncer ◽  
Sunil Giri

In this paper we the study of dynamics of time since infection structured vector born model with the direct transmission. We use standard incidence term to model the new infections. We analyze the corresponding system of partial di erential equation and obtain an explicit formula for the basic reproduction number R0. The diseases-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number is less than one, R0 < 1. Endemic equilibrium exists and is locally asymptotically stable when R0 > 1. The disease will persist at the endemic equilibrium whenever the basic reproduction number is greater than one.

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Stanislas Ouaro ◽  
Ali Traoré

We study a vector-borne disease with age of vaccination. A nonlinear incidence rate including mass action and saturating incidence as special cases is considered. The global dynamics of the equilibria are investigated and we show that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable; that is, the disease dies out, while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable, which means that the disease persists in the population. Using the basic reproduction number, we derive a vaccination coverage rate that is required for disease control and elimination.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
El Mehdi Lotfi ◽  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

The aim of this paper is to study the dynamics of a reaction-diffusion SIR epidemic model with specific nonlinear incidence rate. The global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity, which leads to the eradication of disease from population. When the basic reproduction number is greater than unity, then disease-free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists in the population. Numerical simulations are presented to illustrate our theoretical results.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550082 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Qaiser Badshah ◽  
Saeed Islam

In this paper, an SEIVR epidemic model with generalized incidence and preventive vaccination is considered. First, we formulate the model and obtain its basic properties. Then, we find the equilibrium points of the model, the disease-free and the endemic equilibrium. The stability of disease-free and endemic equilibrium is associated with the basic reproduction number [Formula: see text]. If the basic reproduction number [Formula: see text], the disease-free equilibrium is locally as well as globally asymptotically stable. Moreover, if the basic reproduction number [Formula: see text], the disease is uniformly persistent and the unique endemic equilibrium of the system is locally as well as globally asymptotically stable under certain conditions. Finally, the numerical results justify the analytical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Kai Wang ◽  
Xueliang Zhang ◽  
Zhidong Teng ◽  
Lei Wang ◽  
Liping Zhang

A patch model for echinococcosis due to dogs migration is proposed to explore the effect of dogs migration among patches on the spread of echinococcosis. We firstly define the basic reproduction numberR0. The mathematical results show that the dynamics of the model can be completely determined byR0. IfR0<1, the disease-free equilibrium is globally asymptotically stable. WhenR0>1, the model is permanence and endemic equilibrium is globally asymptotically stable. According to the simulations, it is shown that the larger diffusion of dogs from the lower epidemic areas to the higher prevalence areas can intensify the spread of echinococcosis. However, the larger diffusion of dogs from the higher prevalence areas to the lower epidemic areas can reduce the spread and is beneficial for disease control.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850018 ◽  
Author(s):  
Juan Wang ◽  
Xue-Zhi Li ◽  
Souvik Bhattacharya

In this paper, an epidemic model of a vector-borne disease, namely, malaria, is considered. The explicit expression of the basic reproduction number is obtained, the local and global asymptotical stability of the disease-free equilibrium is proved under certain conditions. It is shown that the model exhibits the phenomenon of backward bifurcation where the stable disease-free equilibrium coexists with a stable endemic equilibrium. Further, it is proved that the unique endemic equilibrium is globally asymptotically stable under certain conditions.


2014 ◽  
Vol 9 (2) ◽  
pp. 52
Author(s):  
Roni Tri Putra ◽  
Sukatik - ◽  
Sri Nita ◽  
Yandraini Yunida

In this paper, it will be studied global stability endemic of equilibrium points of  a SEIR model with infectious force in latent, infected and immune period. From the model it will be found investigated the existence and its stability of points its equilibrium. The global stability of equilibrium points is depending on the value of the basic reproduction number  If   there is a unique endemic equilibrium which is globally asymptotically stable.


2013 ◽  
Vol 18 (2) ◽  
pp. 250-263 ◽  
Author(s):  
Rui Xu

A mathematical model describing the transmission dynamics of an infectious disease with an exposed (latent) period, relapse and a saturation incidence rate is investigated. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is established. By using suitable Lyapunov functionals and LaSalle’s invariance principle, it is proven that if the basic reproduction number is less than unity, the diseasefree equilibrium is globally asymptotically stable and therefore the disease fades out; and if the basic reproduction number is greater than unity, the endemic equilibrium is globally asymptotically stable and the disease becomes endemic.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yao Chen ◽  
Mei Yan ◽  
Zhongyi Xiang

A two-city SIR epidemic model with transport-related infections is proposed. Some good analytical results are given for this model. If the basic reproduction numberℜ0γ≤1, there exists a disease-free equilibrium which is globally asymptotically stable. There exists an endemic equilibrium which is locally asymptotically stable if the basic reproduction numberℜ0γ>1. We also show the permanence of this SIR model. In addition, sufficient conditions are established for global asymptotic stability of the endemic equilibrium.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750096 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Taj Wali Khan ◽  
Saeed Islam

In this paper, a dynamical system of a SEIQV mathematical model with nonlinear generalized incidence arising in biology is investigated. The stability of the disease-free and endemic equilibrium is discussed. The basic reproduction number of the model is obtained. We found that the disease-free and endemic equilibrium is stable locally as well as globally asymptotically stable. For [Formula: see text], the disease-free equilibrium is stable both locally and globally and for [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, some numerical results are presented.


Sign in / Sign up

Export Citation Format

Share Document