ON THE GASDYNAMIC MECHANISMS OF EXOTHERMIC REACTION WAVE FORMATION BEHIND SHOCK WAVES

Author(s):  
A. Kiverin ◽  
◽  
I. Yakovenko ◽  

The paper analyzes the gasdynamic evolution of the test mixture flow in the shock tube at the stage prior to reaction start. The numerical analysis clearly shows that the incepience of reaction kernels is associated with the specific features of flow development in the boundary layer behind an incident shock wave. It is shown that similar to the processes in the gas flow near a solid surface, the gasdynamic instability arises and develops in the flow behind a shock wave. The linear stage of instability development determines the formation of roll-up vortices at a certain distance behind the shock front. Further, at the nonlinear stage, these roll-up vortices transform in more complex structures that diffuse into the bulk flow. Evolution of vortices causes temperature redistribution on the scales of the boundary layer. On the one hand, there is a certain heating due to the kinetic energy dissipation. On the other hand, there are heat losses to the wall. As a result, the temperature field near the wall becomes nonuniform. The reflected shock amplifies temperature perturbations when interacts with the developed boundary layer. This mechanism determines the formation of hot kernels in which the reaction starts. So, the localized sites of exothermal reaction are arising providing conditions for reaction wave formation and propagation in the precompressed test gas.

2009 ◽  
Vol 635 ◽  
pp. 47-74 ◽  
Author(s):  
R. A. HUMBLE ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An incident shock wave/turbulent boundary layer interaction at Mach 2.1 is investigated using particle image velocimetry in combination with data processing using the proper orthogonal decomposition, to obtain an instantaneous and statistical description of the unsteady flow organization. The global structure of the interaction is observed to vary considerably in time. Although reversed flow is often measured instantaneously, on average no reversed flow is observed. On an instantaneous basis, the interaction exhibits a multi-layered structure, characterized by a relatively high-velocity outer region and low-velocity inner region. Discrete vortical structures are prevalent along their interface, which create an intermittent fluid exchange as they propagate downstream. A statistical analysis suggests that the instantaneous fullness of the incoming boundary layer velocity profile is (weakly) correlated with the size of the separation bubble and position of the reflected shock wave. The eigenmodes show an energetic association between velocity fluctuations within the incoming boundary layer, separated flow region and across the reflected shock wave, and portray subspace features that represent the phenomenology observed within the instantaneous realizations.


2020 ◽  
Vol 23 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Zhang Qinghu ◽  
Zhu Zhiwei ◽  
Lin Jingzhou ◽  
Xie Futian ◽  
Zhong Jun

2018 ◽  
Vol 209 ◽  
pp. 00003
Author(s):  
Nickolay Smirnov ◽  
Valeriy Nikitin

The paper presents results of numerical and experimental investigation of mixture ignition and detonation onset in shock wave reflected from inside a wedge. Contrary to existing opinion of shock wave focusing being the mechanism for detonation onset in reflection from a wedge or cone, it was demonstrated that along with the main scenario there exists a transient one, under which focusing causes ignition and successive flame acceleration bringing to detonation onset far behind the reflected shock wave. Several different flow scenarios manifest in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes. Comparison of numerical and experimental results made it possible to validate the developed 3-D transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen – air mixtures.


Author(s):  
W. A. Woods

The paper first explains the importance of the reflection of shock waves in the design of certain chemical plant. The theory of the reflection of shock waves is also discussed in the first part of the paper. It is shown that when a shock wave travelling along a pipe containing stationary gas reaches the outlet end of the pipe there may be ( a) a reflected expansion wave, ( b) a reflected shock wave, ( c) a reflected sound wave, ( d) no reflected wave at all, ( e) a standing shock wave situated at the end of the pipe, depending upon the strength of the incident shock wave and the amount of blockage present at the outlet end of the pipe. The conditions for each kind of reflection are determined, and in the case of the reflected shock wave region the strengths and speeds of the reflected shock waves are established throughout the region and the results are presented graphically. In the second part of the paper the results are given of experiments carried out on a shock tube fitted with various kinds of deflector plates. The experiments were performed to study the reflection of shock waves from the deflector plates by measuring pressure/time indicator diagrams near the outlet end of the pipe. The indicator diagrams revealed the approximate pressure amplitudes of the incident and reflected shock waves and also the wave travel times for the shock waves. This information was used in conjunction with the charts given in the first part of the paper to establish the deflector geometry and spacing needed in order to avoid the occurrence of a reflected shock wave.


1961 ◽  
Vol 83 (4) ◽  
pp. 663-670 ◽  
Author(s):  
George Rudinger

Previous studies of shock reflection from open-ended duct configurations indicate that a steady discharge is not instantaneously formed and that the effects of this lag may occasionally be important. A theory is available which satisfactorily describes the lag effects in subcritical flow, but its validity for supercritical flow has not previously been verified. Shock-tube experiments are therefore carried out to study the lag effects in supercritical flow from a sharp-edged orifice. The incident shock wave either modifies an initial supercritical discharge, or establishes such a discharge with the gas initially being at rest. Schlieren photographs show a violent transition of the flow downstream of the orifice that lasts several milliseconds. Pressure records taken inside the duct indicate a small, but distinct, pressure rise that also lasts for several milliseconds following the passage of the reflected shock wave. It is shown that this apparent agreement of the transition times is accidental. A method is described to evaluate the effect of boundary-layer growth on the pressure behind the reflected shock wave, and the results indicate that the entire observed pressure rise is accounted for by this effect. Consequently, flow adjustment in the orifice may be considered as instantaneous for all practical purposes.


The flow that results when a shock wave in a dusty gas is reflected from a rigid wall is studied theoretically. By applying an idealized equilibrium gas analysis, it is shown that there are three types of shock reflection. The incident shock wave and the reflected shock wave are partly dispersed if the incident shock is strong the former is partly dispersed but the latter is fully dispersed if the incident shock is of intermediate strength and both of them are fully dispersed if the incident shock is weak. The equations of motion are also solved numerically with a modified random-choice method involving an operator splitting technique to study the time-dependent non-equilibrium flow. The results demonstrate the details of the formation of the reflected shock wave for the three types described.


AIAA Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Tianshu Liu ◽  
David M. Salazar ◽  
Jim Crafton ◽  
Nickolay Rogoshchenkov ◽  
Colleen Ryan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document