scholarly journals Three-dimensional simulation of combustion, detonation and deflagration to detonation transition processes

2018 ◽  
Vol 209 ◽  
pp. 00003
Author(s):  
Nickolay Smirnov ◽  
Valeriy Nikitin

The paper presents results of numerical and experimental investigation of mixture ignition and detonation onset in shock wave reflected from inside a wedge. Contrary to existing opinion of shock wave focusing being the mechanism for detonation onset in reflection from a wedge or cone, it was demonstrated that along with the main scenario there exists a transient one, under which focusing causes ignition and successive flame acceleration bringing to detonation onset far behind the reflected shock wave. Several different flow scenarios manifest in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes. Comparison of numerical and experimental results made it possible to validate the developed 3-D transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen – air mixtures.

Author(s):  
W. A. Woods

The paper first explains the importance of the reflection of shock waves in the design of certain chemical plant. The theory of the reflection of shock waves is also discussed in the first part of the paper. It is shown that when a shock wave travelling along a pipe containing stationary gas reaches the outlet end of the pipe there may be ( a) a reflected expansion wave, ( b) a reflected shock wave, ( c) a reflected sound wave, ( d) no reflected wave at all, ( e) a standing shock wave situated at the end of the pipe, depending upon the strength of the incident shock wave and the amount of blockage present at the outlet end of the pipe. The conditions for each kind of reflection are determined, and in the case of the reflected shock wave region the strengths and speeds of the reflected shock waves are established throughout the region and the results are presented graphically. In the second part of the paper the results are given of experiments carried out on a shock tube fitted with various kinds of deflector plates. The experiments were performed to study the reflection of shock waves from the deflector plates by measuring pressure/time indicator diagrams near the outlet end of the pipe. The indicator diagrams revealed the approximate pressure amplitudes of the incident and reflected shock waves and also the wave travel times for the shock waves. This information was used in conjunction with the charts given in the first part of the paper to establish the deflector geometry and spacing needed in order to avoid the occurrence of a reflected shock wave.


2009 ◽  
Vol 635 ◽  
pp. 47-74 ◽  
Author(s):  
R. A. HUMBLE ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An incident shock wave/turbulent boundary layer interaction at Mach 2.1 is investigated using particle image velocimetry in combination with data processing using the proper orthogonal decomposition, to obtain an instantaneous and statistical description of the unsteady flow organization. The global structure of the interaction is observed to vary considerably in time. Although reversed flow is often measured instantaneously, on average no reversed flow is observed. On an instantaneous basis, the interaction exhibits a multi-layered structure, characterized by a relatively high-velocity outer region and low-velocity inner region. Discrete vortical structures are prevalent along their interface, which create an intermittent fluid exchange as they propagate downstream. A statistical analysis suggests that the instantaneous fullness of the incoming boundary layer velocity profile is (weakly) correlated with the size of the separation bubble and position of the reflected shock wave. The eigenmodes show an energetic association between velocity fluctuations within the incoming boundary layer, separated flow region and across the reflected shock wave, and portray subspace features that represent the phenomenology observed within the instantaneous realizations.


1961 ◽  
Vol 83 (4) ◽  
pp. 663-670 ◽  
Author(s):  
George Rudinger

Previous studies of shock reflection from open-ended duct configurations indicate that a steady discharge is not instantaneously formed and that the effects of this lag may occasionally be important. A theory is available which satisfactorily describes the lag effects in subcritical flow, but its validity for supercritical flow has not previously been verified. Shock-tube experiments are therefore carried out to study the lag effects in supercritical flow from a sharp-edged orifice. The incident shock wave either modifies an initial supercritical discharge, or establishes such a discharge with the gas initially being at rest. Schlieren photographs show a violent transition of the flow downstream of the orifice that lasts several milliseconds. Pressure records taken inside the duct indicate a small, but distinct, pressure rise that also lasts for several milliseconds following the passage of the reflected shock wave. It is shown that this apparent agreement of the transition times is accidental. A method is described to evaluate the effect of boundary-layer growth on the pressure behind the reflected shock wave, and the results indicate that the entire observed pressure rise is accounted for by this effect. Consequently, flow adjustment in the orifice may be considered as instantaneous for all practical purposes.


The flow that results when a shock wave in a dusty gas is reflected from a rigid wall is studied theoretically. By applying an idealized equilibrium gas analysis, it is shown that there are three types of shock reflection. The incident shock wave and the reflected shock wave are partly dispersed if the incident shock is strong the former is partly dispersed but the latter is fully dispersed if the incident shock is of intermediate strength and both of them are fully dispersed if the incident shock is weak. The equations of motion are also solved numerically with a modified random-choice method involving an operator splitting technique to study the time-dependent non-equilibrium flow. The results demonstrate the details of the formation of the reflected shock wave for the three types described.


2009 ◽  
Vol 622 ◽  
pp. 33-62 ◽  
Author(s):  
R. A. HUMBLE ◽  
G. E. ELSINGA ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An experimental study is carried out to investigate the three-dimensional instantaneous structure of an incident shock wave/turbulent boundary layer interaction at Mach 2.1 using tomographic particle image velocimetry. Large-scale coherent motions within the incoming boundary layer are observed, in the form of three-dimensional streamwise-elongated regions of relatively low- and high-speed fluid, similar to what has been reported in other supersonic boundary layers. Three-dimensional vortical structures are found to be associated with the low-speed regions, in a way that can be explained by the hairpin packet model. The instantaneous reflected shock wave pattern is observed to conform to the low- and high-speed regions as they enter the interaction, and its organization may be qualitatively decomposed into streamwise translation and spanwise rippling patterns, in agreement with what has been observed in direct numerical simulations. The results are used to construct a conceptual model of the three-dimensional unsteady flow organization of the interaction.


Author(s):  
A. Kiverin ◽  
◽  
I. Yakovenko ◽  

The paper analyzes the gasdynamic evolution of the test mixture flow in the shock tube at the stage prior to reaction start. The numerical analysis clearly shows that the incepience of reaction kernels is associated with the specific features of flow development in the boundary layer behind an incident shock wave. It is shown that similar to the processes in the gas flow near a solid surface, the gasdynamic instability arises and develops in the flow behind a shock wave. The linear stage of instability development determines the formation of roll-up vortices at a certain distance behind the shock front. Further, at the nonlinear stage, these roll-up vortices transform in more complex structures that diffuse into the bulk flow. Evolution of vortices causes temperature redistribution on the scales of the boundary layer. On the one hand, there is a certain heating due to the kinetic energy dissipation. On the other hand, there are heat losses to the wall. As a result, the temperature field near the wall becomes nonuniform. The reflected shock amplifies temperature perturbations when interacts with the developed boundary layer. This mechanism determines the formation of hot kernels in which the reaction starts. So, the localized sites of exothermal reaction are arising providing conditions for reaction wave formation and propagation in the precompressed test gas.


1976 ◽  
Vol 75 (2) ◽  
pp. 373-383 ◽  
Author(s):  
John C. Cummings

The flow field produced by a shock wave reflecting from a helium gas-liquid interface was investigated using a cryogenic shock tube. Incident and reflected shock waves were observed in the gas; transmitted first- and second-sound shocks were observed in the liquid. Wave diagrams are constructed to compare the data with theoretical wave trajectories. Qualitative agreement between data and theory is shown. Quantitative differences between data and theory indicate a need for further analysis of both the gas-liquid interface and the propagation of nonlinear waves in liquid helium.This work was a first step in the experimental investigation of a complex non-equilibrium state. The results demonstrate clearly the usefulness of the cryogenic shock tube as a research tool. The well-controlled jump in temperature and pressure across the incident shock wave provides unique initial conditions for the study of dynamic phenomena in superfluid helium.


2021 ◽  
Vol 33 (5) ◽  
pp. 271-280
Author(s):  
Dmitry Sergeevich Kononov ◽  
Vladimir Yurevich Gidaspov ◽  
Sergei Vladimirovich Strijhak

The possibility of using reduced combustion mechanisms for hydrocarbon fuels in solvers developed and used at ISP RAS is investigated. These mechanisms contain smaller number of stages and substances appearing in them, but they allow obtaining results in a good agreement with experimental data in a much shorter calculation time. The comparison is made with the results obtained with using the Moscow Aviation Institute solvers. A modified mechanism of methane combustion is considered. It can be extended to describe the chemical reaction processes in other hydrocarbon-oxygen mixtures. The choice of methane is due to the prospects of this fuel at the present time. As the first test problem, a standard chemFoam is used. This solver was designed to demonstrate the occurrence of chemical reactions in a computational domain consists of one cell only. The ignition delay and the parameter values of the thermodynamic equilibrium state reached are taken as the comparison criteria. The second test problem is the flow modeling in a shock tube after the shock wave has been reflected from the wall. This problem is considered in a three-dimensional domain using the ISP RAS reactingPimpleCentralFoam solver. Results were compared with ones obtained by grid-characteristic and Godunov's methods in one-dimensional nonstationary calculations. The effects of viscosity, thermal conductivity and diffusion are not taken into account. The distributions of the flow parameters behind the reflected shock wave are obtained. Results are analyzed depending on the value of the falling shock wave Mach number. Estimates of the possible application of this reduced mechanism are given.


1975 ◽  
Vol 14 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Manfred Natter

This paper considers the steady two-dimensional problem of regular reflexion and symmetric intersection of oblique magnetogasdynamic shock waves. It is assumed that the fluid medium is a non-viscous, non-heat-conducting, ideal gas of infinite electrical conductivity, and that the applied magnetic field is parallel to the velocity of the approaching stream. In view of the complexity of the shock relations, a graphical method is presented for determining the orientation and strength of the reflected shock wave in terms of the Laval number M*1 (flow speed divided by critical sound speed), the Alfvén number A1 (flow speed divided by Alfvén speed), and the shock angle ϑ 1 ahead of the incident shock. Moreover, the possible ranges of M*1, A1, and ϑ 1, for which regular reflexion may occur, are calculated and illustrated graphically for the case of a monatomic gas.


Sign in / Sign up

Export Citation Format

Share Document