layer growth
Recently Published Documents


TOTAL DOCUMENTS

1714
(FIVE YEARS 196)

H-INDEX

74
(FIVE YEARS 6)

2022 ◽  
Vol 64 (1) ◽  
pp. 117
Author(s):  
А.А. Корякин ◽  
С.А. Кукушкин ◽  
А.В. Осипов ◽  
Ш.Ш. Шарофидинов

The nucleation mechanism of aluminum nitride films grown by the method of hydride vapor phase epitaxy on hybrid substrates 3C-SiC/Si(111) is theoretically analyzed. The temperature regions and vapor pressure regions of components are determined in which the island growth mechanism and the layer-by-layer growth mechanism are realized. The theoretical conclusions are compared with the experimental data. The morphology of aluminum nitride film on 3C-SiC/Si(111) at the initial growth stage is investigated by the method of scanning electron microscopy. The methods of controlling the change of the growth mechanism from the island growth to the layer-by-layer growth are proposed.


Author(s):  
Julien Duboisset ◽  
Patrick Ferrand ◽  
Arthur Baroni ◽  
Tilman A. Grünewald ◽  
Hamadou Dicko ◽  
...  

Author(s):  
Р.В. Левин ◽  
В.Н. Неведомский ◽  
Л.А. Сокура

The paper presents the results of a study of factors affecting the thickness of transition (interface) layers in stressed InAs/GaSb superlattices during growth by MOCVD method. It is shown that the thicknesses of the interface layers between InAs and GaSb are practically independent of the growth temperature. The thickness of the interface layers is influenced by the direction of switching the layer growth. The smallest thickness of 1.2-1.4 nm of the interface layer InAs/GaSb was obtained for the direction of growth switching from GaSb to InAs.


Author(s):  
Дмитрий Викторович Иванов ◽  
Виталий Александрович Анофриев ◽  
Владимир Александрович Кошелев ◽  
Александр Сергеевич Антонов ◽  
Сергей Александрович Васильев ◽  
...  

В данной работе методом молекулярной динамики с использованием потенциала сильной связи проведено моделирование процесса молекулярно-лучевой эпитаксии с целью определения закономерностей при формировании фрактальных металлических пленок платины на поверхности родия. Установлена возможность формирования фрактальных структур как в островковых пленках платины на поверхности родия, так и в сплошной пленке. Установлены параметры компьютерного эксперимента, определяющие переход от отдельных островковых пленок к сплошной пленке в указанной системе. С использованием различных программных продуктов Gwyddion и Image Analysis, а также собственной разработки FractalSurface проанализирован диапазон изменения фрактальной размерности при различных условиях молекулярно-динамического эксперимента методом подсчета кубов. Полученные значения фрактальной размерности в целом находятся в приемлемом согласии между собой, однако существует ряд исключений, которые обсуждаются более подробно. Сравнительный анализ получаемых результатов позволяет формулировать рекомендации для методики создания, корректировки и прецизионного контроля при «выращивании» структур с заданной морфологией поверхности. In this work, the molecular dynamics method and the tight-binding potential are used to simulate the process of molecular beam epitaxy in order to determine the regularities in the formation of fractal platinum metal films on the rhodium surface. The possibility of formation of fractal structures both in island platinum films on the rhodium surface and in a continuous film has been established. The parameters of the computer experiment, which determine the transition from individual island films to a continuous film in the indicated system, have been established. Using various software products Gwyddion and Image Analysis, as well as our own software FractalSurface, the range of changes in the fractal dimension has been analyzed under various conditions of a molecular dynamics experiment by the method of cube counting. The obtained values of the fractal dimension are generally in acceptable agreement with each other; however, there is a number of exceptions, which are discussed in more detail. A comparative analysis of the results obtained allows one to formulate recommendations for the methodology for creating, adjusting and precision control when «growing» structures with a given surface morphology.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7909
Author(s):  
Karel Dušek ◽  
Petr Veselý ◽  
David Bušek ◽  
Adam Petráč ◽  
Attila Géczy ◽  
...  

Flux contained in solder paste significantly affects the process of solder joint creation during reflow soldering, including the creation of an intermetallic layer (IML). This work investigates the dependence of intermetallic layer thickness on ROL0/ROL1 flux classification, glossy or matt solder mask, and OSP/HASL/ENIG soldering pad surface finish. Two original SAC305 solder pastes differing only in the used flux were chosen for the experiment. The influence of multiple reflows was also observed. The intermetallic layer thicknesses were obtained by the image analysis of micro-section images. The flux type proved to have a significant impact on the intermetallic layer thickness. The solder paste with ROL1 caused an increase in IML thickness by up to 40% in comparison to an identical paste with ROL0 flux. Furthermore, doubling the roughness of the solder mask has increased the resulting IML thickness by 37% at HASL surface finish and by an average of 22%.


Author(s):  
Klaus Köhler ◽  
Wilfried Pletschen ◽  
Lutz Kirste ◽  
Stefano Leone ◽  
Stefan Müller ◽  
...  

Abstract Leakage of AlxGa1-xN/GaN heterostructures was investigated by admittance–voltage profiling. Nominally undoped structures were grown by low-pressure metal-organic vapor-phase epitaxy (MOVPE). The investigated structures had an Al-content of 30 %. They are compared to structures with an additional 1 nm thick AlN interlayer placed before the Al0.3Ga0.7N layer growth, originally to improve device performance. Conductance of FET devices with AlN interlayer, measured from depletion of the two-dimensional electron gas (2DEG) to zero volt bias at frequencies ranging from 50 Hz to 10 kHz, could be described by free charge carriers using a Drude model. The voltage dependent conductance shows a behavior described by either Poole-Frenkel emission or Schottky emission. From the size of the conductance, as well as simulation of the tunneling current injected from the gate under off-state conditions by universal Schottky tunnelling, Schottky Emission is obvious. Evaluating the data by Schottky emission, we can locate the leakage path, of tens of nm in the range between gate and drain/source with contact to the 2DEG, originating from the AlN interlayer. The static dielectric constant in growth direction, necessary for the evaluation, is determined from various AlxGa1 xN/GaN heterostructures to ε||(0) = 10.7 +/- 0.1.


Author(s):  
XIAOYUE JIN ◽  
LIN CHEN ◽  
KEJIAN WEI ◽  
RUIHONG LIU ◽  
JIAHAO YU ◽  
...  

In this paper, the antifriction carbonitriding (PEC/N) layers were prepared on pure iron by cathodic plasma electrolytic treatment (PET) in glycerin and carbamide aqueous solution under 360[Formula: see text]V for 1, 3 and 10[Formula: see text]min. Influence of discharge time on morphology, structure, surface roughness and microhardness of PEC/N layer was analyzed. The tribological performance of the PEC/N layer, growth mechanism and diffusion process during PEC/N treatment was investigated. The thickness of the PEC/N layer grew to 48[Formula: see text][Formula: see text]m for 10[Formula: see text]min treatment and the growth of the saturation layer met the parabolic law. The highest microhardness of the surface was up to 811 HV, which was 5 times of that of iron substrate. The PEC/N layer consisted of [Formula: see text]-Fe, Fe[Formula: see text]N, Fe4N, Fe3C, Fe5C2 phases and a little FeO phase. The wear rate of the PEC/N layer reduced by five-sixes comparing with the iron substrate and the surface of the wear track was much smoother. The temperature close to the surface during PEC/N fitted by the tested temperature values inside the sample was 801∘C (1074[Formula: see text]K), and the combination diffusion rate of C and N into pure iron during PET at 360[Formula: see text]V reached [Formula: see text][Formula: see text]m2/s. The electron temperature fluctuates between 3000[Formula: see text]K and 8000[Formula: see text]K. The antifriction PEC/N layer displayed a very good wear resistance and the higher diffusion rate makes plasma electrolytic carbonitriding a very effective technique for surface modification of pure iron.


Author(s):  
Sankar Vijay ◽  
Jaimon Cletus ◽  
Arun MG ◽  
Ranjith S Kumar

Abstract Theoretical analysis of the entrance hydrodynamics of microchannels is an important design aspect in connection with the development of microfluidic devices. In this paper, pressure-driven fluid flow in the entrance region of two infinite hydrophobic parallel plates with dissimilar slip-velocities is analytically modelled. The linearized momentum equation is solved by applying the Navier-slip model at the boundaries to achieve the most generalized two-dimensional form. The velocity profile is obtained by combining the developed and developing velocities, which is estimated by invoking the separation of variable method. It is observed that the velocity profile is asymmetric and the shear-free region can be shifted from the geometrical central line by altering the wall hydrophobicity. Moreover, the zero shear zone is transferred more towards the surface having high hydrophobicity. The expression for wall shear stress is obtained analytically using Newton's law of viscosity. Moreover, the boundary layer growth from the upper and lower walls are found to be entirely different and they merge at the entrance length and is noticed to be off-setted from the geometric centre-line. The effect of slip-length on the entrance length is analysed and an empirical correlation is deduced.


Author(s):  
Xiai Luo ◽  
Zhenghan Peng ◽  
Zegao Wang ◽  
Mingdong Dong
Keyword(s):  

2021 ◽  
Vol 105 (1) ◽  
pp. 391-400
Author(s):  
Jakub Dokoupil ◽  
Jiri Stary

This work deals with the comparison of the standard SAC305 (Sn 96.5 %; Ag 3 %; Cu 0.5 %) solder alloy with melting temperature between 217 - 220 °C and an alternative alloy REL61 (SnBiAgCu) with lower silver content and melting temperature in the range of 208 - 215 °C in terms of IMC layer growth during thermal cycling and its effect on the shear strength of the solder joints. The test PCBs were soldered using two different temperature profiles and the temperature cycling was performed under two different conditions. No negative effect of REL61 solder alloy on the growth of the IMC layer under thermal stress and on the subsequent shear strength of the solder joint was found. From this point of view, the REL61 solder alloy can be used as a replacement for the SAC305 solder alloy.


Sign in / Sign up

Export Citation Format

Share Document