INITIALIZATION OF SUPERSONIC COMBUSTION BY INJECTING THE TRANSVERSE DETONATION WAVE INTO THE FLOW

Author(s):  
S. S. Katsnelson ◽  
◽  
A. A. Litvintseva ◽  
G. A. Pozdnyakov ◽  
◽  
...  

The work presents the investigation results of the influence on supersonic oxygen- hydrogen mixture flow by the injected flow into it generated by a detonation tube installed in the supersonic channel wall. The goal of this work is to study the processes of chemical reaction initiation and flow reconstruction under such influence. The mathematical model of the combustion initiation in the experimental setup is developed within a continuous medium on the model-based of a chemically nonequilibrium single-temperature gas. For the combustion reaction of the oxygen-hydrogen mixture, the following main reagents were selected: H2O, OH, O, H, H2, O2, HO2, H2O2 and O3. The combustion kinetic scheme involving these reagents contains 27 reactions. The numerical solution of the equation initial system was found using a third-order noncentral difference scheme. The parameters of the flow initiating combustion were determined from the system of one-dimensional conservation laws for a detonation wave in a detonation tube.

2016 ◽  
Vol 11 (4) ◽  
pp. 33-44
Author(s):  
Igor Bedarev ◽  
Valentin Temerbekov ◽  
Aleksandr Fedorov ◽  
Kristina Rylova

The paper studies of the cellular detonation wave interaction with supersonic reacting flow in the scramjet combustion chamber. Comparing the flow fields for the details and the reduced chemical kinetics models is allowed verifying the acceptability of the proposed simplified kinetic scheme. The possibility of using pulsating detonation for the ignition intensification in the scramjet combustion chamber is shown. Calculation of the detonation wave interaction with nonpremixed hydrogenair mixture is made. The ability to influence on the hydrogen-air mixing process by means of detonation tube is detected. The effect of tube sizes to intensification of hydrogen air mixing in the flow at channel with a cavity is calculated.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Rui Zhang ◽  
Chengwen Zhong ◽  
Sha Liu ◽  
Congshan Zhuo

AbstractIn this paper, we introduce the discrete Maxwellian equilibrium distribution function for incompressible flow and force term into the two-stage third-order Discrete Unified Gas-Kinetic Scheme (DUGKS) for simulating low-speed turbulent flows. The Wall-Adapting Local Eddy-viscosity (WALE) and Vreman sub-grid models for Large-Eddy Simulations (LES) of turbulent flows are coupled within the present framework. Meanwhile, the implicit LES are also presented to verify the effect of LES models. A parallel implementation strategy for the present framework is developed, and three canonical wall-bounded turbulent flow cases are investigated, including the fully developed turbulent channel flow at a friction Reynolds number (Re) about 180, the turbulent plane Couette flow at a friction Re number about 93 and lid-driven cubical cavity flow at a Re number of 12000. The turbulence statistics, including mean velocity, the r.m.s. fluctuations velocity, Reynolds stress, etc. are computed by the present approach. Their predictions match precisely with each other, and they are both in reasonable agreement with the benchmark data of DNS. Especially, the predicted flow physics of three-dimensional lid-driven cavity flow are consistent with the description from abundant literature. The present numerical results verify that the present two-stage third-order DUGKS-based LES method is capable for simulating inhomogeneous wall-bounded turbulent flows and getting reliable results with relatively coarse grids.


1993 ◽  
Vol 9 (2) ◽  
pp. 182-190 ◽  
Author(s):  
F. Fendell ◽  
J. Mitchell ◽  
R. McGregor ◽  
M. Sheffield

2014 ◽  
Vol 15 (4) ◽  
pp. 911-943 ◽  
Author(s):  
Na Liu ◽  
Huazhong Tang

AbstractThis paper develops a high-order accurate gas-kinetic scheme in the framework of the finite volume method for the one- and two-dimensional flow simulations, which is an extension of the third-order accurate gas-kinetic scheme [Q.B. Li, K. Xu, and S. Fu, J. Comput. Phys., 229(2010), 6715-6731] and the second-order accurate gas-kinetic scheme [K. Xu, J. Comput. Phys., 171(2001), 289-335]. It is formed by two parts: quartic polynomial reconstruction of the macroscopic variables and fourth-order accurate flux evolution. The first part reconstructs a piecewise cell-center based quartic polynomial and a cell-vertex based quartic polynomial according to the “initial” cell average approximation of macroscopic variables to recover locally the non-equilibrium and equilibrium single particle velocity distribution functions around the cell interface. It is in view of the fact that all macroscopic variables become moments of a single particle velocity distribution function in the gas-kinetic theory. The generalized moment limiter is employed there to suppress the possible numerical oscillation. In the second part, the macroscopic flux at the cell interface is evolved in fourth-order accuracy by means of the simple particle transport mechanism in the microscopic level, i.e. free transport and the Bhatnagar-Gross-Krook (BGK) collisions. In other words, the fourth-order flux evolution is based on the solution (i.e. the particle velocity distribution function) of the BGK model for the Boltzmann equation. Several 1D and 2D test problems are numerically solved by using the proposed high-order accurate gas-kinetic scheme. By comparing with the exact solutions or the numerical solutions obtained the second-order or third-order accurate gas-kinetic scheme, the computations demonstrate that our scheme is effective and accurate for simulating invisid and viscous fluid flows, and the accuracy of the high-order GKS depends on the choice of the (numerical) collision time.


2020 ◽  
Author(s):  
Rui Zhang ◽  
Chengwen Zhong ◽  
Sha Liu ◽  
Congshan Zhuo

Abstract In this paper, we introduce the incompressible discrete Maxwellian equilibrium distribution function and external forces into the two-stage third-order Discrete Unified Gas-Kinetic Scheme (DUGKS) for simulating low-speed incompressible turbulent flows with forcing term. The Wall-Adapting Local Eddy-viscosity (WALE) and Vreman sub-grid models for Large-Eddy Simulations (LES) of wall-bounded turbulent flows are coupled within the present framework. In order to simulate the three-dimensional turbulent flows associated with great computational cost, a parallel implementation strategy for the present framework is developed, and is validated by three canonical wall-bounded turbulent flows, viz., the fully developed turbulent channel flow at a friction Reynolds number (Re) about 180, the turbulent plane Couette flow at a friction Re number about 93 and three-dimensional lid-driven cubical cavity flow at a Re number of 12000. The turbulence statistics are computed by the present approach with both WALE and Vreman models, and their predictions match precisely with each other. Especially, the predicted flow physics of three-dimensional lid-driven cavity are consistent with the description from abundant literatures. While, they have small discrepancies in comparison to the Direct Numerical Simulation (DNS) due to the relatively low grid resolution. The present numerical results verify that the present two-stage third-order DUGKS-based LES method is capable for simulating inhomogeneous wall-bounded turbulent flows and getting reliable results with relatively coarse grids.


2015 ◽  
Vol 811 ◽  
pp. 162-166
Author(s):  
Sorin Berbente ◽  
Daniel Eugeniu Crunteanu ◽  
Corneliu Berbente

One proposes a combined analytical-numerical method for the supersonic combustion around a conical obstacle, considering variable specific heats with temperature. One important aspect is to avoid the dissociation what is not possible if normal detonation waves (of Chapman-Jouguet type) occur. The Clarke model where the detonation wave is separated in a shock wave and a deflagation wave is able to reduce the temperature. Here conical waves are used. In order to characterize the combustion speed and intensity, new parameters are proposed. A comparison with the Chapman-Jouguet combustion is also presented.


Sign in / Sign up

Export Citation Format

Share Document