supersonic combustion
Recently Published Documents


TOTAL DOCUMENTS

604
(FIVE YEARS 99)

H-INDEX

35
(FIVE YEARS 6)

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123031
Author(s):  
Wubingyi Shen ◽  
Yue Huang ◽  
Wei Yao ◽  
Hedong Liu ◽  
Yancheng You

2022 ◽  
Author(s):  
Ioannis Kokkinakis ◽  
Dimitris Drikakis ◽  
Yun-qin He ◽  
Guo-zhu Liang

Abstract High-order simulations of supersonic combustion are presented to advance understanding of the complex chemically-reacting flow processes and identify unknown mechanisms of the high-speed combustion process. We have employed 11th-order accurate implicit large-eddy simulations in conjunction with thermochemistry models comprising 20 chemical reactions. We compare the computations with available experiments and discuss the accuracy and uncertainties in both. Jets emanating from above and below the hydrogen plumes influence the combustion process and accuracy of the predictions. The simulations reveal that high temperatures are sustained for a long-distance downstream of the combustion onset. A barycentric map for the Reynolds stresses is employed to analyse the turbulent anisotropy. We correlate the axisymmetric contraction and expansion of turbulence with the interaction of reflected-shock waves with the supersonic combustion hydroxyl production regions. The physics insights presented in this study could potentially lead to more efficient supersonic combustion and scramjet technologies.


2022 ◽  
Author(s):  
William C. Moore ◽  
Alan Kim ◽  
Ryan J. Thompson ◽  
Chloe E. Dedic

2021 ◽  
pp. 107299
Author(s):  
Qingji Tian ◽  
Yi-Peng Xu ◽  
Nidal H. Abu-Hamdeh ◽  
Abdullah M. Abusorrah ◽  
Mahmoud M. Selim

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7728
Author(s):  
Longfei Li ◽  
Jiangfeng Wang

A hybrid H2–air kinetic scheme of 11 species and 15 reactions is developed, which is capable of simulating the high-temperature air reaction flows and H2–O2 combustion flows respectively or simultaneously. Based on the Gupta scheme, the mole fraction varying with a Mach number at specific conditions is analyzed, and the weakly-ionized 7-species 7-reaction scheme is selected. The effect of nitrogenous species on the H2–O2 combustion is analyzed by a zero-dimensional simulation of steady-state and unsteady-state combustion under specified conditions, and the selected dominant nitrogenous reaction N + OH = NO + H is distinguished by the production rate of the nitrogenous species. The thermodynamic properties are verified by comparison using the NIST–JANAF database. The reaction rate coefficients of the dominant reaction of the hybrid kinetic scheme distinguished by a sensitivity analysis are corrected. The proposed kinetic scheme is validated by a zero-dimensional calculation of the ignition delay time and two-dimensional computational fluid dynamics (CFD) simulation with finite-rate chemistry on the shock-induced sub-detonative and super-detonative combustion. The ignition delay time of the hybrid kinetic scheme is almost in the middle between the Shang scheme and Jachimowski scheme, and all the calculated ignition delay times are acceptably greater than the experiments due to the errors of the experiments and numerical models. The clearly captured bow shock wave and combustion front using the hybrid kinetic scheme and Shang scheme are almost the same, which is strongly consistent with the schlieren image. In addition, a good agreement of the flow characteristics and mass fraction of the species along the stagnation line is also obtained, which indicates the accuracy and reasonableness of the hybrid kinetic scheme to simulate hybrid H2–air reactive flows.


2021 ◽  
pp. 107193
Author(s):  
Guangli Fan ◽  
Hassan Abdulwahab Anjal ◽  
Raed Qahiti ◽  
Nidal H. Abu-Hamdeh ◽  
Abdullah M. Abusorrah ◽  
...  

Author(s):  
Tingting Jing ◽  
Zhen Xu ◽  
Jiachen Xu ◽  
Fei Qin ◽  
Guoqiang He ◽  
...  

Author(s):  
Az.A. Aliev ◽  
A.S. Burkov ◽  
V.A. Tovstonog ◽  
V.I. Tomak ◽  
D.A. Yagodnikov

One of the features of high-velocity atmospheric aircraft is the presence of thin aerofoils with edges characterised by a small blunt radius, subjected to high-temperature aerodynamic heating at temperatures of up to 2000 -- 2500 °C. In order to ensure correct operation of both the power plant producing thrust in such vehicles, assumed to be a supersonic combustion ramjet, and respective aerodynamic controls, the components subjected to high-velocity air flows must retain their geometric stability. A way to ensure their performance is to use methods and means of thermal protection, as well as materials that are resistant to high temperatures in an oxidising atmosphere, while one of the promising trends is employing refractory oxide materials such as oxides of aluminium, zirconium and hafnium. Since this class of materials has low thermal conductivity, large temperature gradients develop in the vicinity of the surface being heated, resulting in temperature stresses, all of which designers should take into account. We analysed the temperature state in a model of an acute zirconium oxide wedge featuring a small blunt radius, subjected to a high-velocity air flow. To reduce the edge temperature and temperature gradients, we propose a design solution implemented as a thermally conductive core lined with a thin layer of zirconium oxide. We consider using aluminium oxide and hafnium boride as core materials


Sign in / Sign up

Export Citation Format

Share Document