scholarly journals The concept of synthesis of one class of self-synchronizing discrete signals

Radiotekhnika ◽  
2021 ◽  
pp. 24-29
Author(s):  
I.D. Gorbenko ◽  
O.V. Potii ◽  
A.A. Zamula

The use of broadband signals (BSS) makes it possible to increase the noise immunity of information and communication systems (ICS) when exposed to structural (mutual) and organized interference. The real noise immunity will be lower than the potential one. The reason for the decrease in noise immunity, when entering synchronism and when distinguishing signals, is the presence of side peaks of the correlation functions. Proceeding from this, the NLS used in ICS should have such correlation properties when the side peaks of the NLS CF are as small as possible, i.e. ideally should tend to zero. In this case, it is necessary to determine the influence of side peaks on the characteristics of signal detection, measure their parameters, distinguish signals, and find the conditions for obtaining small side peaks. The problem of synthesizing a class of signals with given correlation, ensemble and structural properties, as well as properties of "blurring" in correlation characteristics, is formulated and solved in general form. The specified property ("fuzziness") means that increasing or decreasing the length of the discrete signal does not change the correlation properties of the discrete sequence on the basis of which the signal is synthesized. The use of many of these signal systems in modern information and communication systems will improve the performance indicators of such systems, first of all, noise immunity, secrecy, information security, noise immunity of signal reception.

Radiotekhnika ◽  
2021 ◽  
pp. 25-32
Author(s):  
I.D. Gorbenko ◽  
A.A. Zamula

Methods for information exchange, formation and processing of data used in information and communication systems (ICS), as well as classes of broadband signals used as a physical data carrier, do not provide the necessary (for individual ICS applications) indicators of cyber and information security, noise immunity of reception signals and secrecy of IKS functioning. Most of the existing systems use signals, the construction of which is based on linear laws, which allows an attacker, based on the establishment of the parameters of the signals used in the system, to carry out deliberate interference in the operation of the ICS with minimal energy consumption. The article presents conceptual approaches to the construction of secure ICS, which determine the need to cover the entire spectrum of information transformations in the complex, and based on the synthesis of signal systems with improved ensemble, correlation, structural properties. A method is proposed for synthesizing discrete derivatives of signals based on nonlinear discrete complex cryptographic signals (CS) and orthogonal signals formed on the basis of the rows of the Hadamard matrix (initial signals),. Based on computer modeling and the performed calculations, it is shown that the derivative signals formed on the basis of cryptographic sequences and rows of the Hadamard matrix have improved properties compared to orthogonal and linear classes of signals. Approaches to the construction are stated and a general characteristic of the hardware-software complex for synthesis, analysis, study of properties, generation, processing of a number of studied signal classes is given. It is shown that the use of such signals will improve such indicators of the system functioning as information security, noise immunity of signal reception and secrecy of functioning.


Author(s):  
Alexander Zamula ◽  
Ivan Gorbenko

The paper presents the theoretical foundations of synthesis and analysis of complex nonlinear discrete cryptographic signals, the basis for the synthesis of which are random (pseudo-random) processes, including algorithms for cryptographic transformation of information, as well as methods for optimizing the synthesis of these signals using decimation and discrete programming. namely, the method of branches and boundaries. In order to improve the performance of signal generation and processing, estimates of the effectiveness of the decimation procedure are proposed and presented. It is shown that the use of the studied signal systems will improve the efficiency of modern ICS (speed of data generation and processing devices, noise immunity, information security, secrecy, protection against input (imposition) of false messages, message falsification, data integrity, etc.).


Radiotekhnika ◽  
2020 ◽  
pp. 126-132
Author(s):  
I.D. Gorbenko ◽  
A.A. Zamula ◽  
Ho Tri Luc

The paper presents the results of solving the urgent problem of improving the performance indicators of information and communication systems (ICS), in particular, information security, noise immunity, secrecy, the speed of formation and processing of information. The use of the distributed spectrum technology (broadband noise-like signals) is a promising direction for ensuring the security of information resources. The methods used for data formation and processing, as well as the classes of broadband signals used as physical data carriers, do not allow providing the necessary (especially for critical infrastructure facilities) indicators of information security and noise immunity. In this case, as discrete sequences (DS) that expand the spectrum (manipulate the carrier frequency), should be used DS based on nonlinear construction rules and having improved correlation, ensemble and structural properties. Methods for the synthesis and formation of nonlinear discrete complex signals, namely, the so-called cryptographic signals, are proposed. The first method, presented in the article, uses random (pseudo-random) processes. Another method is based on the implementation of the operation of decimation of the original discrete sequence of symbols obtained from the results of the implementation of the first method; it provides the synthesis of an ensemble of signals for a certain signal duration. Analytical expressions are obtained for determining the synthesis time of an ensemble of signals using the proposed methods. It is shown that the speed of the signal generation method based on the decimation operation for a certain signal duration is more than three orders of magnitude higher than the speed of the method based on the random (pseudo-random) processes used. At the same time, based on the carried out computer simulation, it is shown that the signals obtained using the proposed methods have identical correlation, ensemble, and structural properties.


Radiotekhnika ◽  
2020 ◽  
pp. 141-147
Author(s):  
A.A. Zamula ◽  
I.D. Gorbenko ◽  
Ho Tri Luc

The search for effective methods of synthesis of discrete signals (sequences) that correspond to the potentially possible limiting characteristics of correlation functions and possess the necessary correlation, structural, ensemble properties remains an urgent problem. The authors have proposed a method for the synthesis of derivatives of signal systems, for which orthogonal signals are used as the initial ones, and nonlinear discrete complex cryptographic signals (CS) are used as generating signals. The synthesis of the latter ones is based on the use of random (pseudo-random) processes, including algorithms for cryptographic information transformation. Derivative signals synthesized in this way have improved (in comparison with linear signal classes) ensemble and correlation properties, while the statistical properties of such signal systems remain unexplored. The paper presents the results of testing derived signal systems using the tests defined in FIPS PUB 140 and NIST 800-22. Analysis of the results obtained allows us to assert that the statistical properties of this class of derived signals satisfy the requirements for pseudo-random sequences: unpredictability, irreversibility, randomness, independence of symbols, etc. In essence, such signals do not differ from random sequences. The use of the proposed class of derived signals will improve the performance of signal reception noise immunity, information security and secrecy of the ICS functioning.


Author(s):  
A. V. Sokolov ◽  
O. N. Zhdanov

In recent decades, perfect algebraic constructions are successfully being use to signal systems synthesis, to construct block and stream cryptographic algorithms, to create pseudo-random sequence generators as well as in many other fields of science and technology. Among perfect algebraic constructions a significant place is occupied by bent-sequences and the class of perfect binary arrays associated with them. Bent-sequences are used for development of modern cryptographic primitives, as well as for constructing constant amplitude codes (C-codes) used in code division multiple access technology. In turn, perfect binary arrays are used for constructing correction codes, systems of biphase phase- shifted signals and multi-level cryptographic systems. The development of methods of many-valued logic in modern information and communication systems has attracted the attention of researchers to the improvement of methods for synthesizing many-valued bent-sequences for cryptography and information transmission tasks. The new results obtained in the field of the synthesis of ternary bent-sequences, make actual the problem of researching the class of perfect ternary arrays. In this paper we consider the problem of extending the definition of perfect binary arrays to three-valued logic case, as a result of which the definition of a perfect ternary array was introduced on the basis of the determination of the unbalance of the ternary function. A complete class of perfect ternary arrays of the third order is obtained by a regular method, bypassing the search. Thus, it is established that the class of perfect ternary arrays is a union of four subclasses, in each of which the corresponding methods of reproduction are determined. The paper establishes the relationship between the class of ternary bent-sequences and the class of perfect ternary arrays. The obtained results are the basis for the introduction of perfect ternary arrays into modern cryptographic and telecommunication algorithms.


Sign in / Sign up

Export Citation Format

Share Document