synthesis time
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 150)

H-INDEX

25
(FIVE YEARS 6)

2022 ◽  
Vol 19 ◽  
Author(s):  
Hetal I. Soni ◽  
Navin B. Patel ◽  
Rahul B. Parmar ◽  
Manuel J. Chan- Bacab ◽  
Gildardo River

Aim: This study aims to synthesize thiazolidine-4-one compounds with a pyrimidine nucleus and evaluate against different species of bacteria, fungi, protozoa, and the malaria parasite. Background: Microwave irradiation was the best method for synthesizing the thiazolidin-4-one ring system. It took only 15 minutes for synthesizing thiazolidin-4-one while the conventional method required 12 hours. The rapid reaction was the main concern of this research. Objective: Pyrimidine and Thiazolidin-4-one nucleus have broad-spectrum biological activity and when it is introduced with other hetero atoms containing moiety, many types of biological activities have been found; antimicrobial, anti-tuberculosis, anti-protozoa, antimalarial are the main activities. The activity of these compounds inspired us to do extra research on Thiazolidin-4-one fused pyrimidines with different functional groups. The aim of this is to synthesize a combination of these two ring systems in less time by using a microwave irradiation method and to evaluate new compounds for different bioactivity. Method: 2-(4-Chlorophenyl)-3-(4-(substituted phenyl)-6-(substituted aryl) pyrimidin-2-yl) thiazolidin-4-ones (6A-J) were synthesized by microwave irradiation to save energy and time. The structure of all newly synthesized motifs was characterized by spectral analysis (1H NMR, 13C NMR, IR, spectroscopy) and screened for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes, antifungal activity against Candida albicans, Aspergillus niger, Aspergillus clavatus, anti-tuberculosis activity against M. tuberculosis H37RV, antimalarial activity against Plasmodium falciparum and anti-protozoa activity against L. mexicana and T. cruzi. Result: Because of microwave irradiation synthesis, time period is very less for preparing the new compound. Biological response given by compounds 6B, 6C, 6D, 6E, 6G, 6H, and 6J was found excellent. Conclusion: Good yield with purity of the newly synthesized thiazolidine-4-one compounds obtained in less time by using microwave irradiation. The biological response of some of the compounds of this series was found excellent


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 303
Author(s):  
Gunnar Símonarson ◽  
Antiope Lotsari ◽  
Anders E. C. Palmqvist

A low-temperature spray deposition synthesis was developed to prepare locally hexagonally ordered mesoporous titania films with polycrystalline anatase pore walls in an evaporation-induced self-assembly process. The titania film preparation procedure is conducted completely at temperatures below 50 °C. The effects of spray time, film thickness, synthesis time prior to spray deposition, and aging time at high relative humidity after deposition on the atomic arrangement and the mesoorder of the mesoporous titania were studied. We find the crystallite size to depend on both the synthesis time and aging time of the films, where longer times result in larger crystallites. Using the photocatalytic activity of titania, the structure-directing agent is removed with UV radiation at 43–46 °C. The capability of the prepared films to remove the polymer template increased with longer synthesis and aging times due to the increased crystallinity, which increases the photocatalytic efficiency of the titania films. However, with increasingly longer times, the crystallites grow too large for the mesoorder of the pores to be maintained. This work shows that a scalable spray coating method can be used to prepare locally ordered mesoporous polycrystalline titania films by judiciously tuning the synthesis parameters.


2021 ◽  
Vol 22 (48) ◽  
pp. 25-30
Author(s):  
Narandalai Byamba-ochir ◽  
Nemekhbayar Davaadorj ◽  
Battseveen Buyankhishig ◽  
Enkhtuul Surenjav

Silver nanoparticles (AgNPs) and silver nanoparticles doped activated carbon (AC-Ag) composite materials were synthesized by hydrothermal processes in supercritical water conditions (29 MPa and 400 °C) using batch reactor. We studied the influence of the precursor solution concentration, reaction temperature under the hydrothermal conditions, and synthesis time on the properties of synthesized materials. The properties of plain AgNPs and AC-Ag composite materials synthesized in supercritical water, including crystallinity, particle size, and molecular interactions between AC and Ag were investigated, comprehensively. Compared to the plain AgNPs, the activated carbon-supported Ag nanocomposite was synthesized faster due to the active functional groups of activated carbon. Furthermore, the FTIR results reveal that the silver nanoparticles are attached to the activated carbon surface in the presence of oxygen bonded carbonyl and carboxyl groups. The nano-sized metal silver particles were observed on the AC surface when analyzed by TEM and XRD. All results imply that the supercritical water condition allows the formation of silver particles less than 100 nm either in the form of plain particles or deposited on the activated carbon surface using the silver acetate precursor solution. This environmentally benign supercritical hydrothermal process can replace the conventional method and become a novel synthesis method for preparing various new materials.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7663
Author(s):  
Paulina Bednarczyk ◽  
Izabela Irska ◽  
Konrad Gziut ◽  
Paula Ossowicz-Rupniewska

This work involves the synthesis of hybrid oligomers based on the epoxy methacrylate resin. The EA resin was obtained by the modification of industrial-grade bisphenol A-based epoxy resin and methacrylic acid has been synthesized in order to develop multifunctional resins comprising both epoxide group and reactive, terminal unsaturation. Owing to the presence of both epoxy and double carbon–carbon pendant groups, the reaction product exhibits photocrosslinking via two distinct mechanisms: (i) cationic ring-opening polymerization and (ii) free radical polymerization. Monitoring of EA synthesis reactions over time using PAVs, MAAC and NV parameters, and the FT-IR method reveals that esterification reactions proceed faster at the start, exhibiting over 40% of conversion within the initial 60 min, which can be associated with a relatively high concentration of reactive sites and low viscosity of the reaction mixture at the initial reaction stage. With the further increase in the reaction time, the reaction rate tends to decrease.. The control of the EA synthesis process can guide how to adjust reactions to obtain EAs with desired characteristics. Based on obtained values, one can state that the optimum synthesis time of about 4–5 h should be adopted to prepare EAs having both epoxy groups and unsaturated double bonds. The structure of the obtained EA was confirmed by FT-IR and NMR methods, as well as the determination of partial acid value and epoxy equivalent. Samples at various stages of synthesis were cured with UV radiation in order to study the kinetics of the process according to cationic and radical polymerization determined via photo-differential scanning calorimetry (photo-DSC) and real-time infrared spectroscopy (RT-IR) and then the properties of the cured coatings were tested. It turned out that the cationic polymerization was slower with a lower conversion of the photoreactive groups, as compared to the radical polymerization. All the obtained EA coatings were characterized by good properties of cured coatings and can be successfully used in the coating-forming sector.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Haifeng Wang ◽  
Joung Hyung Cho

In order to overcome the problems of low signal-to-noise ratio in the information output interface and long time for information synthesis in the traditional virtual display method of clothing, a CLO3D-based virtual display method for wetsuit is designed in this study. The proposed method works as follows. Firstly, it analyzes the categories and functional characteristics of the wetsuit and the virtual display process of the CLO3D software. In the second step, the design of the proposed method for the process of data collection and fusion of the wetsuit design is made. In the subsequent steps, human model is established, designs are made for the style and modeling, simulation is made for the pattern and color of the wetsuit fabric, and dynamic display is made. Experimental results show that the signal-to-noise ratio (SNR) of the information output interface of the proposed method is above 75 dB, and the maximum SNR can reach 80.5 dB, and the information synthesis time varies between 32 min and 47 min, indicating that the proposed method is more efficient and effective.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7604
Author(s):  
Hasan Shabbir ◽  
Tomasz Tokarski ◽  
Ditta Ungor ◽  
Marek Wojnicki

In this work, we report the synthesis method of carbon quantum dots (CDs) using the one-step method for fast and effective metal ion determination. Ascorbic acid was used as an inexpensive and environmentally friendly precursor. High-pressure and high-temperature reactors were used for this purpose. Microscopic characterization revealed the size of CDs was in the range of 2–6 nm and they had an ordered structure. The photoluminescence properties of the CDs depend on the process temperature, and we obtained the highest PL spectra for 6 h of hydrothermal reaction. The maximum emission spectra depend poorly on synthesis time. Further characterization shows that CDs are a good contender for sensing Fe3+ in aqueous systems and can detect concentrations up to 0.49 ppm. The emission spectra efficiency was enhanced by up to 200% with synthesis time.


Author(s):  
Ilham Alkian ◽  
Heri Sutanto ◽  
Hadiyanto Hadiyanto

Abstract Early detection of heavy metals in drinking water is a fundamental step that must be taken to prevent adverse effects on health. This research aims to develop a heavy metal ion detector by utilizing the fluorescence properties of carbon dots. Cdots were synthesized using the microwave irradiation method based on the central composite design: urea mass 0.31-3.68 gr; reactor power 200-1000 W; synthesis time is 13-46 min, and the response is quantum yield. Material characterization includes PL, TEM, UV-VIS, XRD, and FTIR. The selectivity and sensitivity of Cdots as detectors were tested for Ag+, Bi3+, Ni2+, Al3+, Co2+, Pb2+, Fe3+, Zn2+, Zr4+, and Hg2+ ions at concentrations of 0-10 µM. The results showed that Cdots were successfully synthesized by fluorescent light green at 544 nm. An adequate response model is quadratic with the formulation QY= +58.36+10.41X1+14.06X2+13.59X3–5.57X2X3–4.89X12-8.60X22– 5.40X32. The best Cdots were obtained in the formulation of R9 (3 g, 800 W, 40 min), which resulted in a QY of 74.39%. The characteristics of Cdots are spherical, diameter 6.6 nm, the bandgap of 2.53 eV, and having an amorphous structure. The surface of Cdots contains various functional groups such as O-H, C-H, C=O, C N, and C=C. In the heavy metal detection test, Cdots showed specific sensitivity to Fe- 3+ ions. The addition of Fe3+ concentration and the extinction of Cdots fluorescence intensity formed a linear correlation F0/F=0.08894[Fe3+]+0.99391 (R2=0.99276). The detection ability of Cdots for Fe3+ ions reaches a concentration of 0.016 ppm, much lower than the regulatory threshold limit of SNI, WHO, and IBWA. The detection of Fe3+ ions in drinking water uses a fluorescence technique consistent with the SSA and ICP-OES. Based on these results, the fluorescence technique using Cdots can be an instrument for quality control of the final drinking water product.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1313
Author(s):  
Renata C. F. de Lima ◽  
Daniele da Silva Oliveira ◽  
Sibele B. C. Pergher

A natural clinoptilolite zeolite was transformed into other zeolites of greater industrial interest, such as zeolites with GIS and LTA structures. The synthesis conditions were studied, and the interzeolitic transformation was characterized by X-ray diffraction (XRD), X-ray fluorescence (FRX), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). From the results, it was possible to observe that the GIS and LTA zeolites were successfully synthesized. Furthermore, the results revealed that a synthesis time of 4 days was enough to obtain the GIS structure, and 4 h was sufficient to obtain LTA. The interzeolitic transformation can be explained by the RBU (Ring Building Unit) approach using C4 units from the HEU topology. The use of clinoptilolite in the synthesis of other zeolites is an innovative, economically viable, and environmentally sustainable process that exploits a material that exists in large quantities and is still little explored by industry.


Chemija ◽  
2021 ◽  
Vol 32 (3-4) ◽  
Author(s):  
Antanas Strakšys ◽  
Tatjana Kochanė ◽  
Sandra Mačiulytė ◽  
Saulutė Budrienė

Maltogenic α amylase from Bacillus stearothermophilus (BsMa) was immobilized by covalent attachment and physical adsorption onto porous poly(urethane urea) (PUU) microparticles obtained from poly(vinyl alcohol) (PVA) and 4,4’-methylenebis(cyclohexyl diisocyanate) (H12DI) by onepot synthesis. The influence of PUU synthesis parameters such as PVA and H12DI molar ratio, synthesis time and temperature on porosity, surface area, structure of microparticles and catalytic activity and stability of immobilized BsMa was investigated. The highest efficiency of the immobilization of BsMa onto the PUU carrier was 97% and the highest residual stability of the immobilized enzyme reached 95% after 28 days of storage at 4°C. The optimal activity temperature of immobilized BsMa was at 80°C and it was higher than that of native enzyme. Effects of ionic strength and repetitive batch processing cycles on the activity of immobilized BsMa were also studied. Immobilization of BsMa onto PUU carriers has a great potential for biotechnology and food industries.


Author(s):  
ILYINA Anastasiia

Background. The current problem of investment in human capital is the level of their innovativeness, that is usefulness for the society and profitability for the investor, where the education plays a huge role as a factor in the objectivity of the evaluation of proposals to identify the promising investment objects. Analysis of recent research and publications. A number of researchers have studied the problems associated with the innovation investment and human capital. However, the development of human capital through smart investment in education and science requires further research. The aim of the article is to study the process of the investment in human capital development to intensify innovation activities in the country. Materials and methods. The scientific articles, monographs and statistical data of the official websites of the State Statistic Service of Ukraine and Global Innovation Indexwere examined, so they presented information base of the research. Methods of conceptual synthesis, time series analysis, comparative and system analyzes, modeling and abstraction were used in this paper. Results.Over the past ten years, there has been an inadequate distribution of the funds invested in human capital by public authorities among participants in the investment process in Ukraine. It is necessary to improve investment management of human capital to solve this problem, since optimization of the quality assurance system of education plays a crucial role. Conclusion. The strategic planning of innovation and investment activities of public and private sectors should be aimed at developing an effective system of human capital management, which in turn requires the establishment of relations between central and local executive bodies, local self-government bodies and participants in the educational process. Keywords: investment, human capital, innovation, education, science, information and communication technologies.


Sign in / Sign up

Export Citation Format

Share Document