scholarly journals Facial Expression Recognition Based on Deep Learning Convolution Neural Network: A Review

Author(s):  
Sharmeen M. Saleem Abdullah ◽  
◽  
Adnan Mohsin Abdulazeez ◽  

Facial emotional processing is one of the most important activities in effective calculations, engagement with people and computers, machine vision, video game testing, and consumer research. Facial expressions are a form of nonverbal communication, as they reveal a person's inner feelings and emotions. Extensive attention to Facial Expression Recognition (FER) has recently been received as facial expressions are considered. As the fastest communication medium of any kind of information. Facial expression recognition gives a better understanding of a person's thoughts or views and analyzes them with the currently trending deep learning methods. Accuracy rate sharply compared to traditional state-of-the-art systems. This article provides a brief overview of the different FER fields of application and publicly accessible databases used in FER and studies the latest and current reviews in FER using Convolution Neural Network (CNN) algorithms. Finally, it is observed that everyone reached good results, especially in terms of accuracy, with different rates, and using different data sets, which impacts the results.

Webology ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 804-816
Author(s):  
Elaf J. Al Taee ◽  
Qasim Mohammed Jasim

A facial expression is a visual impression of a person's situations, emotions, cognitive activity, personality, intention and psychopathology, it has an active and vital role in the exchange of information and communication between people. In machines and robots which dedicated to communication with humans, the facial expressions recognition play an important and vital role in communication and reading of what is the person implies, especially in the field of health. For that the research in this field leads to development in communication with the robot. This topic has been discussed extensively, and with the progress of deep learning and use Convolution Neural Network CNN in image processing which widely proved efficiency, led to use CNN in the recognition of facial expressions. Automatic system for Facial Expression Recognition FER require to perform detection and location of faces in a cluttered scene, feature extraction, and classification. In this research, the CNN used for perform the process of FER. The target is to label each image of facial into one of the seven facial emotion categories considered in the JAFFE database. JAFFE facial expression database with seven facial expression labels as sad, happy, fear, surprise, anger, disgust, and natural are used in this research. We trained CNN with different depths using gray-scale images from the JAFFE database.The accuracy of proposed system was 100%.


Information ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 375 ◽  
Author(s):  
Yingying Wang ◽  
Yibin Li ◽  
Yong Song ◽  
Xuewen Rong

As an important part of emotion research, facial expression recognition is a necessary requirement in human–machine interface. Generally, a face expression recognition system includes face detection, feature extraction, and feature classification. Although great success has been made by the traditional machine learning methods, most of them have complex computational problems and lack the ability to extract comprehensive and abstract features. Deep learning-based methods can realize a higher recognition rate for facial expressions, but a large number of training samples and tuning parameters are needed, and the hardware requirement is very high. For the above problems, this paper proposes a method combining features that extracted by the convolutional neural network (CNN) with the C4.5 classifier to recognize facial expressions, which not only can address the incompleteness of handcrafted features but also can avoid the high hardware configuration in the deep learning model. Considering some problems of overfitting and weak generalization ability of the single classifier, random forest is applied in this paper. Meanwhile, this paper makes some improvements for C4.5 classifier and the traditional random forest in the process of experiments. A large number of experiments have proved the effectiveness and feasibility of the proposed method.


2018 ◽  
Vol 84 ◽  
pp. 251-261 ◽  
Author(s):  
Yuanyuan Liu ◽  
Xiaohui Yuan ◽  
Xi Gong ◽  
Zhong Xie ◽  
Fang Fang ◽  
...  

2021 ◽  
Vol 7 ◽  
pp. e736
Author(s):  
Olufisayo Ekundayo ◽  
Serestina Viriri

Facial Expression Recognition (FER) has gained considerable attention in affective computing due to its vast area of applications. Diverse approaches and methods have been considered for a robust FER in the field, but only a few works considered the intensity of emotion embedded in the expression. Even the available studies on expression intensity estimation successfully assigned a nominal/regression value or classified emotion in a range of intervals. Most of the available works on facial expression intensity estimation successfully present only the emotion intensity estimation. At the same time, others proposed methods that predict emotion and its intensity in different channels. These multiclass approaches and extensions do not conform to man heuristic manner of recognising emotion and its intensity estimation. This work presents a Multilabel Convolution Neural Network (ML-CNN)-based model, which could simultaneously recognise emotion and provide ordinal metrics as the intensity estimation of the emotion. The proposed ML-CNN is enhanced with the aggregation of Binary Cross-Entropy (BCE) loss and Island Loss (IL) functions to minimise intraclass and interclass variations. Also, ML-CNN model is pre-trained with Visual Geometric Group (VGG-16) to control overfitting. In the experiments conducted on Binghampton University 3D Facial Expression (BU-3DFE) and Cohn Kanade extension (CK+) datasets, we evaluate ML-CNN’s performance based on accuracy and loss. We also carried out a comparative study of our model with some popularly used multilabel algorithms using standard multilabel metrics. ML-CNN model simultaneously predicts emotion and intensity estimation using ordinal metrics. The model also shows appreciable and superior performance over four standard multilabel algorithms: Chain Classifier (CC), distinct Random K label set (RAKEL), Multilabel K Nearest Neighbour (MLKNN) and Multilabel ARAM (MLARAM).


Sign in / Sign up

Export Citation Format

Share Document