scholarly journals Effective resistance to powdery mildew in Aegilops L. accessions

2020 ◽  
Vol 181 (3) ◽  
pp. 135-140
Author(s):  
M. A. Kolesova ◽  
N. N. Chikida ◽  
M. Kh. Belousova ◽  
L. G. Tyryshkin

Background. Powdery mildew (Blumeria graminis (DC.) E.O. Speer f. sp. tritici Em. Marchal) is widespread and harmful in all regions of bread wheat cultivation. Severe development of powdery mildew leads to a decrease in the number and weight of grains. Growing resistant cultivars is the most environmentally friendly and economically profitable method to protect wheat from the disease. Development of such cultivars requires a search for new donors of effective genes controlling the resistance. To expand the genetic diversity of wheat for resistance to B. graminis, wild relatives of Triticum aestivum L., including Aegilops L. spp., are widely used. The aim of this work was to characterize seven Aegilops spp. for effective seedling and adult plant resistance to powdery mildew.Materials and methods. The material of the study consisted of 437 accessions representing 7 Aegilops spp. (Ae. speltoides Tausch, Ae. caudata L., Ae. biuncialis Vis., Ae. tauschii Coss., Ae. cylindrica Host, Ae. crassa Boiss. and Ae. ventricosa Tausch) from the collection of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR, St. Petersburg). Juvenile resistance was studied when the seedlings were inoculated with the agent of powdery mildew under controlled laboratory conditions; the adult plant resistance, after artificial inoculation of the plants and under natural infection in the fields of Pushkin and Pavlovsk Laboratories of VIR. Complex populations of the B. graminis agent were used for inoculation. The types of response to infection were scored 10 days after inoculation according to a conventional scale.Results and conclusions. As a result of the tests, susceptibility to powdery mildew was shown in all Aegilops accessions of the D-genome group; all the studied representatives of Ae. speltoides, Ae. caudata and Ae. biuncialis were highly resistant to powdery mildew. 

2009 ◽  
Vol 99 (10) ◽  
pp. 1121-1126 ◽  
Author(s):  
Caixia Lan ◽  
Shanshan Liang ◽  
Zhulin Wang ◽  
Jun Yan ◽  
Yong Zhang ◽  
...  

Adult-plant resistance (APR) is an effective means of controlling powdery mildew in wheat. In the present study, 406 simple-sequence repeat markers were used to map quantitative trait loci (QTLs) for APR to powdery mildew in a doubled-haploid (DH) population of 181 lines derived from the cross Bainong 64 × Jingshuang 16. The DH lines were planted in a randomized complete block design with three replicates in Beijing and Anyang during the 2005–06 and 2007–08 cropping seasons. Artificial inoculations were carried out in Beijing using the highly virulent Blumeria graminis f. sp. tritici isolate E20. Disease severities on penultimate leaves were scored twice in Beijing whereas, at Anyang, maximum disease severities (MDS) were recorded following natural infection. Broad-sense heritabilities of MDS and areas under the disease progress curve were 0.89 and 0.77, respectively, based on the mean values averaged across environments. Composite interval mapping detected four QTLs for APR to powdery mildew on chromosomes 1A, 4DL, 6BS, and 7A; these were designated QPm.caas-1A, QPm.caas-4DL, QPm.caas-6BS, and QPm.caas-7A, respectively, and explained 6.3 to 22.7% of the phenotypic variance. QTLs QPm.caas-4DL and QPm.caas-6BS were stable across environments with high genetic effects on powdery mildew response, accounting for 15.2 to 22.7% and 9.0 to 13.2% of the phenotypic variance, respectively. These results should be useful for the future improvement of powdery mildew resistance in wheat.


2006 ◽  
Vol 96 (7) ◽  
pp. 784-789 ◽  
Author(s):  
S. S. Liang ◽  
K. Suenaga ◽  
Z. H. He ◽  
Z. L. Wang ◽  
H. Y. Liu ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major disease to wheat (Triticum aestivum) worldwide. Use of adult-plant resistance (APR) is an effective method to develop wheat cultivars with durable resistance to powdery mildew. In the present study, 432 molecular markers were used to map quantitative trait loci (QTL) for APR to powdery mildew in a doubled haploid (DH) population with 107 lines derived from the cross Fukuho-komugi × Oligoculm. Field trials were conducted in Beijing and Anyang, China during 2003-2004 and 2004-2005 cropping seasons, respectively. The DH lines were planted in a randomized complete block design with three replicates. Artificial inoculation was carried out in Beijing with highly virulent isolate E20 of B. graminis f. sp. tritici and the powdery mildew severity on penultimate leaf was evaluated four times, and the maximum disease severity (MDS) on penultimate leaf was investigated in Anyang under natural inoculation in May 2004 and 2005. The heritability of resistance to powdery mildew for MDS in 2 years and two locations ranged from 0.82 to 0.93, while the heritability for area under the disease progress curve was between 0.84 and 0.91. With the method of composite interval mapping, four QTL for APR to powdery mildew were detected on chromosomes 1AS, 2BL, 4BL, and 7DS, explaining 5.7 to 26.6% of the phenotypic variance. Three QTL on chromosomes 1AS, 2BL, and 7DS were derived from the female, Fukuho-komugi, while the one on chromosome 4BL was from the male, Oligoculm. The QTL on chromosome 1AS showed high genetic effect on powdery mildew resistance, accounting for 19.5 to 26.6% of phenotypic variance across two environments. The QTL on 7DS associated with the locus Lr34/Yr18, flanked by microsatellite Xgwm295.1 and Ltn (leaf tip necrosis). These results will benefit for improving powdery mildew resistance in wheat breeding programs.


Crop Science ◽  
2014 ◽  
Vol 54 (5) ◽  
pp. 1907-1925 ◽  
Author(s):  
Zaifeng Li ◽  
Caixia Lan ◽  
Zhonghu He ◽  
Ravi P. Singh ◽  
Garry M. Rosewarne ◽  
...  

1978 ◽  
Vol 20 (1) ◽  
pp. 151-153 ◽  
Author(s):  
R. I. Buzzell ◽  
Jerry H. Haas

In greenhouse tests with Microsphaera diffusa Cke &Pk. on soybeans (Glycine max (L.) Merr.), adult plant resistance was found to be governed by a dominant gene, proposed as Rmd, with the recessive allele, rmd, resulting in susceptibility at all stages.


Sign in / Sign up

Export Citation Format

Share Document