scholarly journals Nodulation, growth and yield response of soybean [(Glycine max l. (merril)] to inoculum (Bradyrhizobium japonicum) under phosphorus levels and compost amendment in Northern Ghana

2017 ◽  
Vol 5 (4) ◽  
pp. 141-150 ◽  
Author(s):  
Dorcas Tinuke Ezekiel–Adewoyin ◽  
◽  
Nana Ewusi-Mensah ◽  
Olufemi Ayanfe Oluwafemi ◽  
David Ogunleti ◽  
...  
1992 ◽  
Vol 38 (6) ◽  
pp. 588-593 ◽  
Author(s):  
D. J. Hume ◽  
D. H. Blair

In the absence of Bradyrhizobium japonicum populations in the soil, yields of field-grown soybean (Glycine max (L.) Merrill) usually respond to inoculation with B. japonicum. The objective of this research was to determine the relationship between numbers of B. japonicum per seed in inoculants and soybean nodulation and yield. A total of six field experiments were conducted in 1989 and 1990 on new soybean soils. In dilution trials, Grip inoculant was applied to provide approximately 106, 105, 104, and 103B. japonicum per seed at two locations in 1989. Nodule number and mass, as well as seed yield, increased curvilinearly upward with increasing log10 most probable numbers (MPNs) of B. japonicum. The yield response curve was best fit by a cubic equation, which accounted for 97% of the variation in yield. Seed yields increased 19% (1.83 to 2.13 Mg/ha) from 105 to 106B. japonicum per seed. In field experiments involving 8 commercial inoculants in 1989 and 10 in 1990, and conducted at two locations in each year, responses to increasing log MPNs in the inoculants also were concave upwards and cubic. In the two years, 78 and 46% of the yield variation was accounted for by log MPN per seed. Increasing MPN per seed from 105 to 106 improved yields in first-time fields by an average of 24%, indicating the present minimum standard of 105B. japonicum per seed should be increased. Key words: most probable numbers, response to inoculation, nodulation, Glycine max (L.) Merrill.


Nitrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 332-346
Author(s):  
Auges Gatabazi ◽  
Barend Juan Vorster ◽  
Mireille Asanzi Mvondo-She ◽  
Edgar Mangwende ◽  
Robert Mangani ◽  
...  

South African soils generally lack native Bradyrhizobium strains that nodulate and fix atmospheric nitrogen (N2) in soybeans (Glycine max L.). It is therefore very important to inoculate soybeans with products that contain effective Bradyrhizobium strains as active ingredients. In this study, a field experiment was conducted on two bioclimatic zones in South Africa during the 2019/2020 season to assess the effect of Bradyrhizobium japonicum strain WB74 inoculant formulation on nitrogen fixation, growth and yield improvement in soybeans. The first bioclimatic zone was characterized by a sandy clay loam soil, whereas the second bioclimatic zone has a sandy loam soil. The results showed that inoculation of soybeans with both peat and liquid formulations of Bradyrhizobium japonicum WB74 increased nitrogen uptake, which resulted in yield increase. The amount of N fixed was measured as 15N isotopes and increased with all treatments compared to the uninoculated control in both liquid and peat inoculant formulations. In bioclimatic zone A, slightly better results were obtained using the liquid formulation (1.79 t ha−1 for liquid compared to 1.75 t ha−1 for peat treatments), while peat formulations performed better in bioclimatic zone B (1.75 t ha−1 for peat compared to 1.71 t ha−1 for liquid treatments). In both areas higher yields were obtained with the formulations used in this study compared to the registered standards (treatment T3). The findings in this study provide vital information in the development and application of formulated microbial inoculants for sustainable agriculture in South Africa.


2019 ◽  
Vol 20 (1) ◽  
pp. 157-178
Author(s):  
CHIKEZIE ENE ◽  
ALOZIE ANYIM ◽  
UCHECHUKWU CHUKWUDI ◽  
EMEKA OKECHUKWU ◽  
UGOCHUKWU IKEOGU

Sign in / Sign up

Export Citation Format

Share Document