Effect of numbers of Bradyrhizobium japonicum applied in commercial inoculants on soybean seed yield in Ontario

1992 ◽  
Vol 38 (6) ◽  
pp. 588-593 ◽  
Author(s):  
D. J. Hume ◽  
D. H. Blair

In the absence of Bradyrhizobium japonicum populations in the soil, yields of field-grown soybean (Glycine max (L.) Merrill) usually respond to inoculation with B. japonicum. The objective of this research was to determine the relationship between numbers of B. japonicum per seed in inoculants and soybean nodulation and yield. A total of six field experiments were conducted in 1989 and 1990 on new soybean soils. In dilution trials, Grip inoculant was applied to provide approximately 106, 105, 104, and 103B. japonicum per seed at two locations in 1989. Nodule number and mass, as well as seed yield, increased curvilinearly upward with increasing log10 most probable numbers (MPNs) of B. japonicum. The yield response curve was best fit by a cubic equation, which accounted for 97% of the variation in yield. Seed yields increased 19% (1.83 to 2.13 Mg/ha) from 105 to 106B. japonicum per seed. In field experiments involving 8 commercial inoculants in 1989 and 10 in 1990, and conducted at two locations in each year, responses to increasing log MPNs in the inoculants also were concave upwards and cubic. In the two years, 78 and 46% of the yield variation was accounted for by log MPN per seed. Increasing MPN per seed from 105 to 106 improved yields in first-time fields by an average of 24%, indicating the present minimum standard of 105B. japonicum per seed should be increased. Key words: most probable numbers, response to inoculation, nodulation, Glycine max (L.) Merrill.

1977 ◽  
Vol 88 (3) ◽  
pp. 605-614 ◽  
Author(s):  
P. D. Hebblethwaite

SUMMARYThe effects of irrigation and nitrogen on S. 23 perennial ryegrass grown for seed were investigated in a series of field experiments from 1972 to 1974. Irrigation significantly increased seed yield by 16% in 1972 and 52% in 1974 but had no effect in the wet year of 1973. In 1972 maximum deficit reached 110 mm at the end of July and coincided with anthesis. Consequently the yield response was due to an increase in number of seeds per unit area and no other seed yield component was affected. In 1974 peak deficit also reached about 100 mm but started to build up rapidly very early in the season and had reached 80 mm by the time that the first ears emerged. Consequently the yield response was due to increases in number of fertile tillers, number of seeds per unit area and 1000-seed weight.Irrigation had no significant effect on number of florets or seeds, except in 1974 when percentage of florets which produced seed was increased by 2%.Irrigation had some effect on threshed straw yields, total dry matter, harvest index and total number of tillers but where this occurred the response was much smaller than that of seed yield which indicates that irrigation had greater effects on the reproductive development of the crop than on yield of dry matter and tillering patterns. Increasing the quantity of nitrogen from 0 to 80 kg/ha increased seed yields, all seed yield components except 1000-seed weight, threshed straw yields and total dry matter and number of tillers at most sampling dates. Increasing the quantity of nitrogen from 80 to 160 kg/ha had little further effect on the above components except in 1972 where seed yields were significantly decreased.In 1972 number of florets was increased and percentage of florets which produced seed decreased with increasing quantities of nitrogen.


DNA Research ◽  
2008 ◽  
Vol 15 (4) ◽  
pp. 201-214 ◽  
Author(s):  
M. Wei ◽  
T. Yokoyama ◽  
K. Minamisawa ◽  
H. Mitsui ◽  
M. Itakura ◽  
...  

1992 ◽  
Vol 6 (1) ◽  
pp. 119-124 ◽  
Author(s):  
Larry G. Heatherly ◽  
C. Dennis Elmore ◽  
Richard A. Wesley

Field studies were conducted for three consecutive years to determine if PRE and/or POST herbicides were needed in addition to preplant foliar-applied glyphosate and POST cultivation for maximum seed yield of irrigated and nonirrigated soybean planted in stale and undisturbed seedbeds on clay soil. Soybean seed yields following the use of PRE and POST herbicides alone or in combination were similar in all years, and exceeded seed yield following the use of glyphosate plus POST cultivation only. Plantings made in no-till and fall-till seedbeds produced similar seed yields when both PRE and POST herbicides were used. These results indicate that glyphosate plus cultivation was not adequate for soybean in stale seedbed plantings, and that either PRE or POST herbicides, but not both, were required for maximum seed yield.


1988 ◽  
Vol 2 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Ronald L. Ritter ◽  
Thomas C. Harris ◽  
Lisa M. Kaufman

In field experiments in 1981, 36 g ai/ha of chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] benzenesulfonamide} applied to winter wheat (Triticum aestivumL. ‘Arthur’) in early spring reduced seed yield in conventional and no-till plantings of double-cropped soybeans [Glycine max(L.) ‘Essex’]. From 1982 to 1984, three rates of chlorsulfuron (9, 18, and 36 g/ha) were applied at three different times (preemergence, early winter, and early spring) to study their residual effects on double-cropped soybeans. Chlorsulfuron at 36 g/ha applied preemergence or early spring reduced soybean seed yields when averaged over the 3-yr period. Metsulfuron {2-[[[[(4-methoxy-6-methyl-1,3,5-triazine-2-yl)amino] carbonyl] amino] sulfonyl] benzoic acid} was tested at three rates (4.5, 9, and 18 g/ha) applied at three times (same as chlorsulfuron) in field studies in 1983 and 1984. Metsulfuron did not injure subsequently planted no-till soybeans.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 836-839 ◽  
Author(s):  
Michael G. Patterson ◽  
Robert H. Walker ◽  
Daniel L. Colvin ◽  
Glenn Wehtje ◽  
John A. McGuire

Soybean field experiments were conducted to compare weed interference data obtained from small 2.7-m2plots to that obtained from large 11-m2plots. Soybean row spacings of 15, 30, 45, and 90 cm were used. Sicklepod, common cocklebur, and soybean biomass as dry matter were harvested from small plots 10 weeks after planting and were compared to weed biomass and soybean seed yield from the large plots. Sicklepod and common cocklebur biomass in small plots increased and soybean biomass decreased as soybean row spacing increased. Soybean biomass was not affected by row spacing when weeds were not present. Sicklepod and common cocklebur biomass in large plots increased and soybean seed yield decreased as soybean row spacing increased. Soybean seed yield was not affected by row spacing when weeds were not present. Comparison of regression coefficients for paired regression lines indicates that soybean biomass from small plots may be substituted for seed yield from large plots as a measure of sicklepod or common cocklebur interference if both size plots use the same soybean row spacing and are irrigated until harvest.


1994 ◽  
Vol 40 (4) ◽  
pp. 322-325 ◽  
Author(s):  
Georges Fouilleux ◽  
Cécile Revellin ◽  
Gérard Catroux

Soybean (Glycine max (L.) Merr.) can be inoculated by delivering inoculant mixed with mineral microgranules to the seedbed. An average decline of 0.61 log units in the number of viable Bradyrhizobium japonicum was found during the 1sth, using available commercial inoculants and granules. These losses were shown to be influenced by inoculant type (peat based, liquid, lyophilized) and granule type. When mixed with granules, a peat-based inoculant was found to be desiccated immediately and subjected to a water potential as low as −170 MPa. Bradyrhizobium japonicum recovery was improved when the moisture content of the granules increased. It was concluded that water suction by granules can subject the bacteria to rapid desiccation and significantly decrease their number. Thus, the nature of inoculant and granular material and their relative water retention characteristics must be taken into account to improve the efficiency of this inoculation process.Key words: Bradyrhizobium japonicum, granular inoculant, inoculation, soybean, survival.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1847
Author(s):  
Olena Sobko ◽  
Andreas Stahl ◽  
Volker Hahn ◽  
Sabine Zikeli ◽  
Wilhelm Claupein ◽  
...  

The cultivation area of soybean (Glycine max (L.) Merr) is increasing in Germany as a way to ensure self-sufficiency through its use as feed and food. However, climatic conditions needed for soybean cultivation are not appropriate in all parts of the country. The objective of this study was to determine the influence of solar radiation, temperature, and precipitation on soybean seed productivity and quality in central and south Germany. A multi-factorial field trial was carried out with three replicates at four locations in 2016 and five locations in 2017, testing 13 soybean varieties from the maturity groups MG 00 and MG 000. Considering all the tested factors, “variety” was highly significant concerning protein content (Ø 41.1% dry matter (DM)) and oil content (Ø 19.1% in DM), but not seed yield (Ø 40.5 dt ha−1).The broad sense heritability of protein content was H2 = 0.80 and of oil content H2 = 0.7. Protein and oil content were significantly negatively correlated (r = −0.82). Seed yield was significantly positively correlated with solar radiation (r = 0.32) and precipitation (r = 0.33), but significantly negatively with Crop Heat Units (CHU) (r = −0.42). Over both experimental years, varieties from maturity group MG 00 were less significantly correlated with the tested environmental factors than varieties from maturity group MG 000. None of the environmental factors tested significantly increased the protein or oil content of soybean. In growing areas with heat periods during ripening, protein content tended to be higher than in cooler areas; in areas with high solar radiation during flowering, protein content tended to be reduced.


Weed Science ◽  
1988 ◽  
Vol 36 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Jeffery M. Higgins ◽  
Ted Whitwell ◽  
Edward C. Murdock ◽  
Joe E. Toler

Field experiments were conducted during 1985 and 1986 to determine the response of soybean [Glycine max(L.) Merr. ‘Coker 156’], pitted morningglory (Ipomoea lacunosaL. # IPOLA), and ivyleaf morningglory [Ipomoea hederacea(L.) Jacq. # IPOHE] to acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid}, fomesafen {5-[2-chloro-4-(trifluoromethyl) phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide}, and lactofen {(±)-2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-dinitrobenzoate}. Acifluorfen and lactofen were more phytotoxic to soybean 15 days after treatment (DAT) than fomesafen. All herbicides at low rates controlled 80% or more pitted morningglory. However, only the high rates (0.6 kg ai/ha) of acifluorfen and fomesafen controlled 80% or more ivyleaf morningglory 90 DAT. Full-season competition from untreated pitted morningglory reduced soybean seed yields 44 and 22% in 1985 and 1986, respectively, compared to 58 and 49% with untreated ivyleaf morningglory. Soybean seed yields were higher in plots receiving acifluorfen or fomesafen applications than lactofen applications.


2020 ◽  
Vol 66 (No. 5) ◽  
pp. 242-247
Author(s):  
Wacław Jarecki

The aim of the study was to assess soybean response to sowing material inoculation with HiStick® Soy preparation, containing Bradyrhizobium japonicum. Based on the obtained results, it was found that the inoculation significantly increased the number and dry weight of nodules on soybean roots compared to control. The bacterial preparation significantly increased the number of pods per plant. As a result, a significant increase in seed yield (0.58 t/ha) was obtained compared to control. HiStick® Soy increased total protein content in seeds. Protein and fat yield was higher after seed inoculation by 318 kg/ha and 101 kg/ha, respectively, compared to control.


Sign in / Sign up

Export Citation Format

Share Document