scholarly journals Finitary approximations of coarse structures

2021 ◽  
Vol 55 (1) ◽  
pp. 33-36
Author(s):  
I. V. Protasov

A coarse structure $ \mathcal{E}$ on a set $X$ is called finitary if, for each entourage $E\in \mathcal{E}$, there exists a natural number $n$ such that $ E[x]< n $ for each $x\in X$. By a finitary approximation of a coarse structure $ \mathcal{E}^\prime$, we mean any finitary coarse structure $ \mathcal{E}$ such that $ \mathcal{E}\subseteq \mathcal{E}^\prime$.If $\mathcal{E}^\prime$ has a countable base and $E[x]$ is finite for each $x\in X$ then $ \mathcal{E}^\prime$has a cellular finitary approximation $ \mathcal{E}$ such that the relations of linkness on subsets of $( X,\mathcal{E}^\prime)$ and $( X, \mathcal{E})$ coincide.This answers Question 6 from [8]: the class of cellular coarse spaces is not stable under linkness. We define and apply the strongest finitary approximation of a coarse structure.

2021 ◽  
Vol 32 (1) ◽  
pp. 65-75
Author(s):  
I. Protasov ◽  
◽  
K. Protasova ◽  

For a group G, we denote by G↔ the coarse space on G endowed with the coarse structure with the base {{(x,y)∈G×G:y∈xF}:F∈[G]<ω}, xF={z−1xz:z∈F}. Our goal is to explore interplays between algebraic properties of G and asymptotic properties of G↔. In particular, we show that asdim G↔=0 if and only if G/ZG is locally finite, ZG is the center of G. For an infinite group G, the coarse space of subgroups of G is discrete if and only if G is a Dedekind group.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


2020 ◽  
Vol 70 (6) ◽  
pp. 1413-1444
Author(s):  
Elisa Hartmann

AbstractTo a coarse structure we associate a Grothendieck topology which is determined by coarse covers. A coarse map between coarse spaces gives rise to a morphism of Grothendieck topologies. This way we define sheaves and sheaf cohomology on coarse spaces. We obtain that sheaf cohomology is a functor on the coarse category: if two coarse maps are close they induce the same map in cohomology. There is a coarse version of a Mayer-Vietoris sequence and for every inclusion of coarse spaces there is a coarse version of relative cohomology. Cohomology with constant coefficients can be computed using the number of ends of a coarse space.


Axiomathes ◽  
2021 ◽  
Author(s):  
Andrew Powell

AbstractThis article provides a survey of key papers that characterise computable functions, but also provides some novel insights as follows. It is argued that the power of algorithms is at least as strong as functions that can be proved to be totally computable in type-theoretic translations of subsystems of second-order Zermelo Fraenkel set theory. Moreover, it is claimed that typed systems of the lambda calculus give rise naturally to a functional interpretation of rich systems of types and to a hierarchy of ordinal recursive functionals of arbitrary type that can be reduced by substitution to natural number functions.


Author(s):  
CARLO SANNA

Abstract Let $g \geq 2$ be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer $C_g$ such that every natural number is the sum of at most $C_g$ base-g Niven numbers.


The Galerkin approximation to the Navier–Stokes equations in dimension N , where N is an infinite non-standard natural number, is shown to have standard part that is a weak solution. This construction is uniform with respect to non-standard representation of the initial data, and provides easy existence proofs for statistical solutions.


2002 ◽  
Vol 133 (2) ◽  
pp. 325-343 ◽  
Author(s):  
KOUKI TANIYAMA ◽  
AKIRA YASUHARA

In the 1990s, Habiro defined Ck-move of oriented links for each natural number k [5]. A Ck-move is a kind of local move of oriented links, and two oriented knots have the same Vassiliev invariants of order [les ] k−1 if and only if they are transformed into each other by Ck-moves. Thus he has succeeded in deducing a geometric conclusion from an algebraic condition. However, this theorem appears only in his recent paper [6], in which he develops his original clasper theory and obtains the theorem as a consequence of clasper theory. We note that the ‘if’ part of the theorem is also shown in [4], [9], [10] and [16], and in [13] Stanford gives another characterization of knots with the same Vassiliev invariants of order [les ] k−1.


1960 ◽  
Vol 25 (1) ◽  
pp. 1-26 ◽  
Author(s):  
H. Jerome Keisler

IntroductionWe shall prove the following theorem, which gives a necessary and sufficient condition for an elementary class to be characterized by a set of sentences having a prescribed number of alternations of quantifiers. A finite sequence of relational systems is said to be a sandwich of order n if each is an elementary extension of (i ≦ n—2), and each is an extension of (i ≦ n—2). If K is an elementary class, then the statements (i) and (ii) are equivalent for each fixed natural number n.


2010 ◽  
Vol 52 (3) ◽  
pp. 453-472 ◽  
Author(s):  
M. J. R. MYERS

AbstractKummer's conjecture predicts the rate of growth of the relative class numbers of cyclotomic fields of prime conductor. We extend Kummer's conjecture to cyclotomic fields of conductor n, where n is any natural number. We show that the Elliott–Halberstam conjecture implies that this generalised Kummer's conjecture is true for almost all n but is false for infinitely many n.


1988 ◽  
Vol 22 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Noel Balzer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document