THEORETICAL MATHEMATICAL MODELING OF HEAT EXCHANGE IN PIPES WITH TRIANGULAR AND SQUARE TURBULATORS WITH d/D=0.95÷0.90, t/D=0.25÷1.00 AND HIGH REYNOLDS NUMBERS Re=106

2021 ◽  
Vol 2021 (11) ◽  
pp. 20-35
Author(s):  
Igor' Lobanov

Mathematical modeling of heat exchange process in straight and round horizontal pipes with protrusions and d/D=0.95...0.90, t/D=0.25...1.00 of triangular and square sections with large Reynolds numbers (RE=106) are carried out on the basis of multiblock computing technologies based on solutions of factored and finite-volume algorithm of RANS equations and energy equations. It is shown that for higher square protrusions and at higher Reynolds numbers, a limited increase in NU/NUgl is accompanied by a significant increase in relative hydro resist ance in accordance with the higher Reynolds number; for triangular turbulators, this persists and even deepens.

1996 ◽  
Vol 32 (3) ◽  
pp. 197-204 ◽  
Author(s):  
T. N. Polubelova ◽  
V. I. Sleptsov ◽  
V. Y. Izakson

Author(s):  
Massimo Sorli ◽  
Laura Gastaldi

The gains values that can be imposed in pneumatic systems controllers are bounded to the restricted actuator bandwidth. That limitation, with low damping and stiffness, due to the air compressibility, seriously affects accuracy and repeatability when varying payload or supply pressures. For modelling and control intent a correct characterisation of the pneumatic actuator natural frequency is indispensable. The aim of this paper is to evaluate how heat exchange process affects the proper characteristics of pneumatic drivers, and in particular their hydraulic stiffness. To this purpose dynamic stiffness had been studied both by imposing in the cylinder’s chambers a polytrophic transformation of the fluid with a prefixed index and by employing energy equations. Numerical results obtained by implementing the two formulations for different working conditions are reported and compared in order to point out the ranges in which they overlap, and hence both approaches produce accurate results, or the ones in which there is a difference, and then it is necessary to consider the temperature dynamics.


1977 ◽  
Vol 79 (2) ◽  
pp. 391-414 ◽  
Author(s):  
M. Nallasamy ◽  
K. Krishna Prasad

The flow in a square cavity is studied by solving the full Navier–Stokes and energy equations numerically, employing finite-difference techniques. Solutions are obtained over a wide range of Reynolds numbers from 0 to 50000. The solutions show that only at very high Reynolds numbers (Re[ges ] 30000) does the flow in the cavity completely correspond to that assumed by Batchelor's model for separated flows. The flow and thermal fields at such high Reynolds numbers clearly exhibit a boundary-layer character. For the first time, it is demonstrated that the downstream secondary eddy grows and decays in a manner similar to the upstream one. The upstream and downstream secondary eddies remain completely viscous throughout the range of Reynolds numbers of their existence. It is suggested that the behaviour of the secondary eddies may be characteristic of internal separated flows.


1993 ◽  
Vol 63 (3) ◽  
pp. 358-363
Author(s):  
A. R. Gachkevich ◽  
B. S. Malkiel' ◽  
Yu. R. Sosnovyi ◽  
R. F. Terletskii

2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1062-1071 ◽  
Author(s):  
A. Seifert ◽  
L. G. Pack

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 825-834
Author(s):  
F. Novak ◽  
T. Sarpkaya

Sign in / Sign up

Export Citation Format

Share Document