〈467〉 Residual Solvents

Keyword(s):  
2017 ◽  
Vol 68 (4) ◽  
pp. 666-670 ◽  
Author(s):  
Mirela Mihon ◽  
Catalin Stelian Tuta ◽  
Alina Catrinel Ion ◽  
Dana Niculae ◽  
Vasile Lavric

The aim of this work was the development and validation of a fast analytical method to determine the residual solvents content in radiopharmaceuticals such as: 18F-Fluorodeoxyglucose (18F-FDG), 18F-Fluoroestradiol (18F-FES), 18F-Fluorothymidine (18F-FLT),18F-Fluoromisonidazole (18F-FMISO). Radiopharmaceuticals are radioactive preparations for medical purposes used in nuclear medicine as tracers in diagnostic imaging and treatment of certain diseases. Positron Emission Tomography (PET) is a medical imaging technique that consists in introducing into the body of a small amount of a biologically active chemical compound labelled with a short lived positron-emitting radioisotope (18F, 11C, 68Ga). Residual solvents are critical impurities in radiopharmaceuticals that can affect labelling, stability and physicochemical properties of drugs. Therefore, the determination of these solvents is essential for quality control of radiopharmaceuticals. Validation of the control method for residual solvents by gas chromatography is referred by the European Pharmacopoeia using a special injection technique (head space). The parameters of the method, which comply with International Conference on Harmonization guidelines, are: accuracy, precision, linearity, limit of detection, limit of quantification and robustness. The proposed method (direct gas chromatography injection) proved to be linear, precise, accurate and robust. Good linearity was achieved for all the solvents and correlation coefficients (R2) for each residual solvent were found more than 0.99.


2017 ◽  
Vol 1500 ◽  
pp. 160-166 ◽  
Author(s):  
Adissu Alemayehu Asfaw ◽  
Kris Wolfs ◽  
Ann Van Schepdael ◽  
Erwin Adams

Author(s):  
Sandip A Telavane ◽  
Seema Kothari ◽  
Manohar V. Lokhande

Validation is important technique for detection, progress and estimation of drugs for pharmaceutical analysis. Aim of this article was to check the progress and validation of the method employed for the Residual Solvents in Bisoprolol Fumarate by Gas Chromatographic technique. The objective of this protocol is to validate a GC method of analysis for detection and Quantification of Residual Solvents Methanol, Acetone and Methylene dichloride in Bisoprolol Fumarate. In the pharmaceutical industry, validation policy is more important for documented of validation, types of validation and validation policy. The method was developed accurately and validation parameters are explained. Chromatographic condition was GC- 2014, gas chromatograph equipped with FID detector, column: 30 m x 0.32 mm ID x 1.8 µm DB - 624 capillary column or equivalent and column temperature was 45°C (hold 7 minutes) to 250°C @ 40°C/minutes, hold at 250°C for 3 minutes. The parameters such as Accuracy, Specificity, Precision, Linearity and Range, Limit of detection (LOD), Limit of quantitation (LOQ), ruggedness, robustness and system suitability testing with residual solvent such as Methanol, Acetone and methylene dichloride. All validation parameters are used in the routine and stability analysis.


Author(s):  
Sanapala Srinivasa Rao ◽  
A. Vijayalakshmi

Residual solvents in Pharmaceuticals are termed as organic volatile impurities. These are the chemicals that are used in the manufacture of drug substance or excipients or use in the preparation of final formulation. Most of the available methods use liquid chromatography which could be expensive and time consuming. Hence, an analytical methodology was developed for the quantification of residual solvents in Glipizide using a headspace gas chromatography (HSGC) with the help of flame ionization detector (FID). Methanol, acetone and dimethyl formamide as residual solvents were determined in Glipizide. Analysis was performed by headspace GC/FID method on Auto system- HS40. Nitrogen was used as a carrier gas and the separation of residual solvents was achieved by DB-Wax 0.25mm, 0.3mcm column. The thermostat temperature was 115 °C for 40 minutes for each vial. % RSD for nine injections obtained are in acceptance criteria. The correlation coefficient R2 obtained greater than 0.99. The method parameters were validated includes specificity, limit of detection and quantification, accuracy, linearity, precision, and robustness. According to the International Conference on Harmonization (ICH) guidelines, a new simple, specific, accurate and precise method was developed and validated.


2021 ◽  
pp. 191-222
Author(s):  
Bob Clifford ◽  
Nicole Lock ◽  
Richard Karbowski ◽  
Vikki Johnson ◽  
Andy Sandy ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document