packaging materials
Recently Published Documents


TOTAL DOCUMENTS

2261
(FIVE YEARS 598)

H-INDEX

66
(FIVE YEARS 13)

2022 ◽  
Vol 14 (2) ◽  
pp. 824
Author(s):  
Roland Franz ◽  
Frank Welle

The European strategy for plastics, as part of the EU’s circular economy action plan, should support the reduction in plastic waste. One key element in this action plan is the improvement of the economics and quality of recycled plastics. In addition, an important goal is that by 2030, all plastics packaging placed on the EU market must either be reusable or can be recycled in a cost-effective manner. This means that, at the end, a closed-loop recycling of food packaging materials should be established. However, the use of recyclates must not result in less severe preventive consumer protection of food packaging materials. This may lead to a conservative evaluation of authorities on post-consumer recyclates in food packaging applications. On the other hand, over-conservatism might over-protect the consumer and generate insurmountable barriers to the application of post-consumer recyclates for food packaging and, hence, counteract the targets of circular economy. The objective of this review is to provide an insight into the evaluation of post-consumer recyclates applied in direct contact to food. Safety assessment criteria as developed by the European Food Safety Authority EFSA will be presented, explained, and critically discussed.


2022 ◽  
Vol 10 (1) ◽  
pp. 26-30
Author(s):  
A Ahmad ◽  
D. T Gungula ◽  
V.T Tame ◽  
J Kapsiya ◽  
J.O. Ilesanmi ◽  
...  

Fresh tomato fruits have a very limited shelf life partly due to their high moisture content and respiration rate. A possible way of storing tomato fruits is to dry and process them into powder or paste. Therefore, this research was conducted to determine the effects of drying methods and packaging materials on physical and sensory qualities of powdered tomato in Yola, Adamawa State, Nigeria. Harvested fruits of tomato variety, “Rio de grande” were subjected to blanching and subsequent drying methods and packaging materials. The experiment was laid out in a Completely Randomized Design (CRD); with the drying methods placed in main plot while the packaging materials in sub-plot and repeated three times before storage for twelve weeks. At four weeks of storage, oven drying method was found to be statistically different (p≤0.05) in terms of water absorption capacity value of 3.19 (mg/100g). The glass jars performed better than polythene bags in color retention, taste and consistency at four weeks of storage. The study shows that tomato fruits can be successfully dried using oven, sun and shade drying methods but preferably oven drying method. The processed powder could be successfully stored for 12 weeks or above using either glass jars or plastic container without affecting the consumer appeal and this will also reduce the postharvest losses of tomato fruits.


Author(s):  
Soma Fatah RASUL ◽  
Rabar Jalal NOORI ◽  
Kale Mohammed ALI ◽  
Rezhna Baiz KHDHIR ◽  
Shakar Rasul AHMED ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Nadia Oulahal ◽  
Pascal Degraeve

In recent years, the search for natural plant-based antimicrobial compounds as alternatives to some synthetic food preservatives or biocides has been stimulated by sanitary, environmental, regulatory, and marketing concerns. In this context, besides their established antioxidant activity, the antimicrobial activity of many plant phenolics deserved increased attention. Indeed, industries processing agricultural plants generate considerable quantities of phenolic-rich products and by-products, which could be valuable natural sources of natural antimicrobial molecules. Plant extracts containing volatile (e.g., essential oils) and non-volatile antimicrobial molecules can be distinguished. Plant essential oils are outside the scope of this review. This review will thus provide an overview of current knowledge regarding the promises and the limits of phenolic-rich plant extracts for food preservation and biofilm control on food-contacting surfaces. After a presentation of the major groups of antimicrobial plant phenolics, of their antimicrobial activity spectrum, and of the diversity of their mechanisms of action, their most promising sources will be reviewed. Since antimicrobial activity reduction often observed when comparing in vitro and in situ activities of plant phenolics has often been reported as a limit for their application, the effects of the composition and the microstructure of the matrices in which unwanted microorganisms are present (e.g., food and/or microbial biofilms) on their activity will be discussed. Then, the different strategies of delivery of antimicrobial phenolics to promote their activity in such matrices, such as their encapsulation or their association with edible coatings or food packaging materials are presented. The possibilities offered by encapsulation or association with polymers of packaging materials or coatings to increase the stability and ease of use of plant phenolics before their application, as well as to get systems for their controlled release are presented and discussed. Finally, the necessity to consider phenolic-rich antimicrobial plant extracts in combination with other factors consistently with hurdle technology principles will be discussed. For instance, several authors recently suggested that natural phenolic-rich extracts could not only extend the shelf-life of foods by controlling bacterial contamination, but could also coexist with probiotic lactic acid bacteria in food systems to provide enhanced health benefits to human.


2022 ◽  
Vol 8 ◽  
Author(s):  
Cristina Muñoz-Shugulí ◽  
Francisco Rodríguez-Mercado ◽  
Carolina Mascayano ◽  
Andrea Herrera ◽  
Julio E. Bruna ◽  
...  

Background: Allyl isothiocyanate is an excellent antimicrobial compound that has been applied in the development of active food packaging materials in the last years. However, the high volatility of this compound could prevent a lasting effect over time. In order to avoid this problem, cyclodextrin inclusion complexes have been proposed as an alternative, being beta-cyclodextrin (β-CD) as the main candidate. In addition, β-CD could act as a relative humidity-responsive nanoparticle. In this regard, the aim of this study was to develop inclusion complexes based on β-CD and AITC as relative humidity-responsive agents, which can be used in the design of active food packaging materials.Methods: Two different β-CD:AITC inclusion complexes (2:1 and 1:1 molar ratios) were obtained by the co-precipitation method. Entrapment efficiency was determined by gas chromatography, while inclusion complexes were characterized through thermal, structural, and physicochemical techniques. Antifungal capacity of inclusion complexes was determined in a headspace system. Furthermore, the AITC release from inclusion complexes to headspace at different percentages of relative humidity was evaluated by gas chromatography, and this behavior was related with molecular dynamic studies.Key Findings and Conclusions: The entrapment efficiency of inclusion complexes was over to 60%. Two coexisting structures were proposed for inclusion complexes through spectroscopic analyses and molecular dynamic simulation. The water sorption capacity of inclusion complexes depended on relative humidity, and they exhibited a strong fungicide activity against Botrytis cinerea. Furthermore, the AITC release to headspace occurred in three stages, which were related with changes in β-CD conformational structure by water sorption and the presence of the different coexisting structures. In addition, a strong influence of relative humidity on AITC release was evidenced. These findings demonstrate that β-CD:AITC inclusion complexes could be used as potential antifungal agents for the design of food packaging materials, whose activity would be able to respond to relative humidity changes.


Sign in / Sign up

Export Citation Format

Share Document