scholarly journals Erratum to: Determining the Binding Constant of LANA Protein Fragment with Nucleosome

2021 ◽  
Vol 76 (1) ◽  
pp. 39-39
Author(s):  
R. V. Novikov ◽  
E. A. Bondarenko ◽  
N. V. Malyuchenko ◽  
A. V. Feofanov ◽  
V. M. Studitsky ◽  
...  
2020 ◽  
Vol 75 (4) ◽  
pp. 252-256
Author(s):  
R. V. Novikov ◽  
E. A. Bondarenko ◽  
N. V. Malyuchenko ◽  
A. V. Feofanov ◽  
V. M. Studitsky ◽  
...  

Nature ◽  
2006 ◽  
Author(s):  
Helen Pearson
Keyword(s):  

Author(s):  
Ying Zhai ◽  
Na Li ◽  
Dachuan Zhang ◽  
Qi Li ◽  
Guoping Zhou ◽  
...  

Virology ◽  
2021 ◽  
Vol 557 ◽  
pp. 15-22
Author(s):  
Teodora Djukic ◽  
Maja Mladenovic ◽  
Dragana Stanic-Vucinic ◽  
Jelena Radosavljevic ◽  
Katarina Smiljanic ◽  
...  

2021 ◽  
pp. 174751982199306
Author(s):  
Ya Gan ◽  
Ning Bai ◽  
Xitong Li ◽  
Shuiting Gao ◽  
Ruiyong Wang

The interactions between radicicol and four proteins (catalase, trypsin, pepsin, and human serum protein) are investigated by spectroscopic techniques and molecular docking. A static quenching process is confirmed. The binding constant value between radicicol and human serum protein is the largest among the four proteins. Results reveal changes in the micro-environment of the protein by the addition of radicicol. It is found that radicicol shows an inhibitory effect on the activity of proteins (catalase, trypsin, and pepsin). Molecular docking results are consistent with the thermodynamic experimental results. This work provides clues to the elucidation of the mechanisms of the interactions between radicicol and proteins.


2021 ◽  
Vol 26 ◽  
pp. 100959
Author(s):  
Filippo Benedetti ◽  
Florian Stracke ◽  
Gerhard Stadlmayr ◽  
Katharina Stadlbauer ◽  
Florian Rüker ◽  
...  

2007 ◽  
Vol 292 (6) ◽  
pp. G1641-G1649 ◽  
Author(s):  
Zuoliang Xiao ◽  
Frank Schmitz ◽  
Victor E. Pricolo ◽  
Piero Biancani ◽  
Jose Behar

Muscle cells from human gallbladders (GB) with cholesterol stones (ChS) exhibit a defective contraction, excess cholesterol (Ch) in the plasma membrane, and lower binding of CCK-1 receptors. These abnormalities improved after muscle cells were incubated with Ch-free liposomes that remove the excess Ch from the plasma membrane. The present studies were designed to investigate the role of caveolin-3 proteins (Cav-3) in the pathogenesis of these abnormalities. Muscle cells from GB with ChS exhibit higher Ch levels in the plasma membrane that were mostly localized in caveolae and associated with parallel increases in the expression of Cav-3 in the caveolae compared with that in GB with pigment stones (PS). The overall number of CCK-1 receptors in the plasma membrane was not different between muscle cells from GB with ChS and PS, but they were increased in the caveolae in muscle cells from GB with ChS. Treatment of muscle cells from GB with ChS with a Gαi3 protein fragment increased the total binding of CCK-1 receptors (from 8.3 to 11.2%) and muscle contraction induced by CCK-8 (from 11.2 to 17.3% shortening). However, Gαq/11 protein fragment had no such effect. Moreover, neither fragment had any effect on muscle cells from GB with PS. We conclude that the defective contraction of muscle cells with excessive Ch levels in the plasma membrane is due to an increased expression of Cav-3 that results in the sequestration of CCK-1 receptors in the caveolae, probably by inhibiting the functions of Gαi3 proteins.


Biochemistry ◽  
2004 ◽  
Vol 43 (50) ◽  
pp. 15873-15883 ◽  
Author(s):  
Christian Klein ◽  
Claire Gensburger ◽  
Solange Freyermuth ◽  
Bala C. Nair ◽  
Gérard Labourdette ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document