Pancreatic beta-cell function evaluated by intravenous glucose and glucagon stimulation. A comparison between insulin and C-peptide to measure insulin secretion

1992 ◽  
Vol 52 (7) ◽  
pp. 631-639 ◽  
Author(s):  
A. Gottsäter ◽  
M. Landin-Olsson ◽  
P. Fernlund ◽  
B. Gullberg ◽  
Å. Lernmark ◽  
...  
1993 ◽  
Vol 264 (3) ◽  
pp. E441-E449 ◽  
Author(s):  
E. Christiansen ◽  
H. B. Andersen ◽  
K. Rasmussen ◽  
N. J. Christensen ◽  
K. Olgaard ◽  
...  

beta-Cell function and glucose metabolism were studied in eight insulin-dependent diabetic recipients of combined segmental pancreas and kidney transplant with peripheral insulin delivery (Px), in eight nondiabetic kidney-transplant individuals (Kx), and in eight normal subjects (Ns) after three consecutive mixed meals. All subjects had normal fasting plasma glucose, but increased basal levels of C-peptide were demonstrated in the transplant groups (P < 0.05 relative to Ns). Postprandial hyperglycemia was increased 14% in Kx and 32% in Px (P < 0.05), whereas compared with Ns postprandial C-peptide levels were increased three- and twofold, respectively, in Kx and Px (P < 0.05). Compared with Ns basal insulin secretion rate (combined model) was increased 2-fold in Kx and 1.4-fold in Px (P < 0.05). Maximal insulin secretion rate was reduced 25% in Px compared with Kx (P < 0.05) but not different from that of Ns (P NS). Also, maximal insulin secretion rate occurred later in Px than in controls (Tmax: Px 50 min, Kx 30 min, and Ns 32 min; P < 0.05). The total integrated insulin secretion was increased 1.4-fold in Px compared with Ns (P < 0.05) but decreased 1.4-fold compared with Kx (P < 0.05). Fasting and postprandial proinsulin-to-C-peptide molar ratios were inappropriately increased in Px compared with Kx and Ns. Basal hepatic glucose production was increased 43% in Px and 33% in Kx compared with Ns (P < 0.05). Postprandial total systemic glucose appearance was similar in all three groups, whereas peripheral glucose disposal was 15% reduced in Px (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
J Peter Ashby ◽  
Brian M Frier

Pancreatic beta-cell function is usually assessed by the measurement of plasma insulin concentration in various clinical situations. However, the advent of an assay for the measurement of connecting-peptide (C-peptide) concentration in plasma has provided a further method for the assessment of the secretory capacity of the pancreatic beta cell in clinical disorders, particularly in the investigation of hypoglycaemia. The metabolism and immunoassay methodology of C-peptide are reviewed, and its application in clinical practice is outlined.


2008 ◽  
Vol 16 (S 1) ◽  
pp. 142-144 ◽  
Author(s):  
C. Snehalatha ◽  
V. Mohan ◽  
A. Ramachandran ◽  
R. Jayashree ◽  
M. Viswanathan

2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Bo Ahrén ◽  
Yuichiro Yamada ◽  
Yutaka Seino

Abstract To establish the contribution of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) for the incretin effect after oral glucose, studies were undertaken in female mice with genetic deletion of receptors for GIP and GLP-1 (double incretin receptor knockout [DIRKO] mice) and their wild-type (WT) counterparts. Insulin secretion was explored after oral glucose (doses ranging from 0 to 100 mg), after intravenous glucose (doses ranging from 0 to 0.75 g/kg), and after oral and intravenous glucose at matching circulating glucose. DIRKO mice had glucose intolerance after oral glucose challenges in association with impaired beta-cell function. Suprabasal area under the curve for C-peptide (AUCC-peptide) correlated linearly with suprabasal AUCglucose both in WT (r = 0.942, P = .017) and DIRKO mice (r = 0.972, P = .006). The slope of this regression was lower in DIRKO than in WT mice (0.012 ± 0.006 vs 0.031 ± 0.006 nmol C-peptide/mmol glucose, P = .042). In contrast, there was no difference in the insulin response to intravenous glucose between WT and DIRKO mice. Furthermore, oral and intravenous glucose administration at matching glucose levels showed that the augmentation of insulin secretion after oral glucose (the incretin effect) in WT mice (11.8 ± 2.3 nmol/L min) was entirely absent in DIRKO mice (3.3 ± 1.2 nmol/L min). We conclude that GIP and GLP-1 are required for normal glucose tolerance and beta-cell function after oral glucose in mice, that they are the sole incretin hormones after oral glucose at higher dose levels, and that they contribute by 65% to insulin secretion after oral glucose.


2015 ◽  
Vol 21 (1) ◽  
pp. 126-137 ◽  
Author(s):  
Sean M. Burns ◽  
Amedeo Vetere ◽  
Deepika Walpita ◽  
Vlado Dančík ◽  
Carol Khodier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document