beta cell
Recently Published Documents


TOTAL DOCUMENTS

4833
(FIVE YEARS 1105)

H-INDEX

138
(FIVE YEARS 11)

2022 ◽  
Vol 12 ◽  
Author(s):  
Brian Akhaphong ◽  
Brigid Gregg ◽  
Doga Kumusoglu ◽  
Seokwon Jo ◽  
Kanakadurga Singer ◽  
...  

The risk of obesity in adulthood is subject to programming in the womb. Maternal obesity contributes to programming of obesity and metabolic disease risk in the adult offspring. With the increasing prevalence of obesity in women of reproductive age there is a need to understand the ramifications of maternal high-fat diet (HFD) during pregnancy on offspring’s metabolic heath trajectory. In the present study, we determined the long-term metabolic outcomes on adult male and female offspring of dams fed with HFD during pregnancy. C57BL/6J dams were fed either Ctrl or 60% Kcal HFD for 4 weeks before and throughout pregnancy, and we tested glucose homeostasis in the adult offspring. Both Ctrl and HFD-dams displayed increased weight during pregnancy, but HFD-dams gained more weight than Ctrl-dams. Litter size and offspring birthweight were not different between HFD-dams or Ctrl-dams. A significant reduction in random blood glucose was evident in newborns from HFD-dams compared to Ctrl-dams. Islet morphology and alpha-cell fraction were normal but a reduction in beta-cell fraction was observed in newborns from HFD-dams compared to Ctrl-dams. During adulthood, male offspring of HFD-dams displayed comparable glucose tolerance under normal chow. Male offspring re-challenged with HFD displayed glucose intolerance transiently. Adult female offspring of HFD-dams demonstrated normal glucose tolerance but displayed increased insulin resistance relative to controls under normal chow diet. Moreover, adult female offspring of HFD-dams displayed increased insulin secretion in response to high-glucose treatment, but beta-cell mass were comparable between groups. Together, these data show that maternal HFD at pre-conception and during gestation predisposes the female offspring to insulin resistance in adulthood.


2022 ◽  
Vol 12 (1) ◽  
pp. 116
Author(s):  
Didier Ducloux ◽  
Cécile Courivaud

Post-transplant diabetes is a frequent complication after transplantation. Moreover, patients suffering from post-transplant diabetes have increased cardiovascular morbidity and reduced survival. Pathogenesis mainly involves beta-cell dysfunction in presence of insulin resistance. Both pre- and post-transplant risk factors are well-described, and some of them may be corrected or prevented. However, the frequency of post-transplant diabetes has not decreased in recent years. We realized a critical appraisal of preventive measures to reduce post-transplant diabetes.


2022 ◽  
Author(s):  
Viljem Pohorec ◽  
Lidija Krizancic Bombek ◽  
Masa Skelin Klemen ◽  
Jurij Dolensek ◽  
Andraz Stozer

Although mice are a very instrumental model in islet beta cell research, possible phenotypic differences between strains and substrains are largely neglected in the scientific community. In this study, we show important phenotypic differences in beta cell responses to glucose between NMRI, C57BL/6J, and C57BL/6N mice, i.e., the three most commonly used strains. High-resolution multicellular confocal imaging of beta cells in acute pancreas tissue slices was used to measure and quantitatively compare the calcium dynamics in response to a wide range of glucose concentrations. Strain- and substrain-specific features were found in all three phases of beta cell responses to glucose: a shift in the dose-response curve characterizing the delay to activation and deactivation in response to stimulus onset and termination, respectively, and distinct concentration-encoding principles during the plateau phase in terms of frequency, duration, and active time changes with increasing glucose concentrations. Our results underline the significance of carefully choosing and reporting the strain to enable comparison and increase reproducibility, emphasize the importance of analyzing a number of different beta cell physiological parameters characterizing the response to glucose, and provide a valuable standard for future studies on beta cell calcium dynamics in health and disease.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Abby F. Fleisch ◽  
Sudipta Kumer Mukherjee ◽  
Subrata K. Biswas ◽  
John F. Obrycki ◽  
Sheikh Muhammad Ekramullah ◽  
...  

Abstract Background Arsenic exposure has been associated with gestational diabetes mellitus. However, the extent to which arsenic exposure during pregnancy is associated with postpartum glucose intolerance is unknown. Methods We studied 323 women in Bangladesh. We assessed arsenic exposure in early pregnancy via toenail and water samples. We measured fasting glucose and insulin in serum at a mean (SD) of 4.0 (3.5) weeks post-delivery. We ran covariate-adjusted, linear regression models to examine associations of arsenic concentrations with HOMA-IR, a marker of insulin resistance, and HOMA-β, a marker of beta cell function. Results Median (IQR) arsenic concentration was 0.45 (0.67) μg/g in toenails and 2.0 (6.5) μg/L in drinking water. Arsenic concentrations during pregnancy were not associated with insulin resistance or beta cell function postpartum. HOMA-IR was 0.07% (− 3.13, 3.37) higher and HOMA-β was 0.96% (− 3.83, 1.99) lower per IQR increment in toenail arsenic, but effect estimates were small and confidence intervals crossed the null. Conclusions Although arsenic exposure during pregnancy has been consistently associated with gestational diabetes mellitus, we found no clear evidence for an adverse effect on postpartum insulin resistance or beta cell function.


Author(s):  
Gad Hatem ◽  
Line Hjort ◽  
Olof Asplund ◽  
Daniel T R Minja ◽  
Omari Abdul Msemo ◽  
...  

Abstract Objective Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mother and children. Offspring of women with EP anemia often have low birth-weight, the latter being a risk factor for cardiometabolic diseases including type 2 diabetes (T2D) later in life. Mechanisms underlying developmental programming of adult cardiometabolic disease include epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth. Methods We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP-anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEG) in UCB exposed to maternal EP-anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function. Results The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming which included the birth-weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL which potentially influence beta-cell development. Insulin levels were lower in EP anemia exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of EP anemic mothers. Conclusions Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Elisa Fernández-Millán ◽  
Carlos Guillén

Type 2 diabetes (T2D) results from impaired beta-cell function and insufficient beta-cell mass compensation in the setting of insulin resistance. Current therapeutic strategies focus their efforts on promoting the maintenance of functional beta-cell mass to ensure appropriate glycemic control. Thus, understanding how beta-cells communicate with metabolic and non-metabolic tissues provides a novel area for investigation and implicates the importance of inter-organ communication in the pathology of metabolic diseases such as T2D. In this review, we provide an overview of secreted factors from diverse organs and tissues that have been shown to impact beta-cell biology. Specifically, we discuss experimental and clinical evidence in support for a role of gut to beta-cell crosstalk, paying particular attention to bacteria-derived factors including short-chain fatty acids, lipopolysaccharide, and factors contained within extracellular vesicles that influence the function and/or the survival of beta cells under normal or diabetogenic conditions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jee-Hye Kim ◽  
Viviane Delghingaro-Augusto ◽  
Jeng Yie Chan ◽  
D. Ross Laybutt ◽  
Joseph Proietto ◽  
...  

BackgroundMaintenance of a normal fetal nutrient supply requires major adaptations in maternal metabolic physiology, including of the islet beta-cell. The role of lipid signaling processes in the mechanisms of islet beta-cell adaptation to pregnancy has been minimally investigated.ObjectiveTo determine the effects of pregnancy on islet fatty acid (FA) metabolic partitioning and FA augmentation of glucose-stimulated insulin secretion (GSIS).MethodsAge matched virgin, early pregnant (gestational day-11, G11) and late pregnant (G19) Sprague-Dawley rats were studied. Fasted and fed state biochemistry, oral glucose tolerance tests (OGTT), and fasted and post-OGTT liver glycogen, were determined to assess in vivo metabolic characteristics. In isolated islets, FA (BSA-bound palmitate 0.25 mmol/l) augmentation of GSIS, FA partitioning into esterification and oxidation processes using metabolic tracer techniques, lipolysis by glycerol release, triacylglycerols (TG) content, and the expression of key beta-cell genes were determined.ResultsPlasma glucose in pregnancy was lower, including during the OGTT (glucose area under the curve 0-120 min (AUC0-120); 655±24 versus 849±13 mmol.l-1.min; G19 vs virgin; P<0.0001), with plasma insulin concentrations equivalent to those of virgin rats (insulin AUC0-120; 97±7 versus 83±7 ng.ml-1.min; G19 vs virgin; not significant). Liver glycogen was depleted in fasted G19 rats with full recovery after oral glucose. Serum TG increased during pregnancy (4.4±0.4, 6.7±0.5; 17.1±1.5 mmol/l; virgin, G11, G19, P<0.0001), and islet TG content decreased (147±42, 172±27, 73±13 ng/µg protein; virgin, G11, G19; P<0.01). GSIS in isolated islets was increased in G19 compared to virgin rats, and this effect was augmented in the presence of FA. FA esterification into phospholipids, monoacylglycerols and TG were increased, whereas FA oxidation was reduced, in islets of pregnant compared to virgin rats, with variable effects on lipolysis dependent on gestational age. Expression of Ppargc1a, a key regulator of mitochondrial metabolism, was reduced by 51% in G11 and 64% in G19 pregnant rat islets compared to virgin rat islets (P<0.001).ConclusionA lowered set-point for islet and hepatic glucose homeostasis in the pregnant rat has been confirmed. Islet adaptation to pregnancy includes increased FA esterification, reduced FA oxidation, and enhanced FA augmentation of glucose-stimulated insulin secretion.


Sign in / Sign up

Export Citation Format

Share Document