Pancreatic beta-cell function and glucose metabolism in human segmental pancreas and kidney transplantation

1993 ◽  
Vol 264 (3) ◽  
pp. E441-E449 ◽  
Author(s):  
E. Christiansen ◽  
H. B. Andersen ◽  
K. Rasmussen ◽  
N. J. Christensen ◽  
K. Olgaard ◽  
...  

beta-Cell function and glucose metabolism were studied in eight insulin-dependent diabetic recipients of combined segmental pancreas and kidney transplant with peripheral insulin delivery (Px), in eight nondiabetic kidney-transplant individuals (Kx), and in eight normal subjects (Ns) after three consecutive mixed meals. All subjects had normal fasting plasma glucose, but increased basal levels of C-peptide were demonstrated in the transplant groups (P < 0.05 relative to Ns). Postprandial hyperglycemia was increased 14% in Kx and 32% in Px (P < 0.05), whereas compared with Ns postprandial C-peptide levels were increased three- and twofold, respectively, in Kx and Px (P < 0.05). Compared with Ns basal insulin secretion rate (combined model) was increased 2-fold in Kx and 1.4-fold in Px (P < 0.05). Maximal insulin secretion rate was reduced 25% in Px compared with Kx (P < 0.05) but not different from that of Ns (P NS). Also, maximal insulin secretion rate occurred later in Px than in controls (Tmax: Px 50 min, Kx 30 min, and Ns 32 min; P < 0.05). The total integrated insulin secretion was increased 1.4-fold in Px compared with Ns (P < 0.05) but decreased 1.4-fold compared with Kx (P < 0.05). Fasting and postprandial proinsulin-to-C-peptide molar ratios were inappropriately increased in Px compared with Kx and Ns. Basal hepatic glucose production was increased 43% in Px and 33% in Kx compared with Ns (P < 0.05). Postprandial total systemic glucose appearance was similar in all three groups, whereas peripheral glucose disposal was 15% reduced in Px (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

Medicina ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 68 ◽  
Author(s):  
Ioannis Ilias ◽  
Aristidis Diamantopoulos ◽  
Maria Pratikaki ◽  
Efthymia Botoula ◽  
Edison Jahaj ◽  
...  

Background and objectives: Critically and non-critically ill patients with SARS-CoV-2 infection (Covid-19) may present with higher-than-expected glycemia, even in the absence of diabetes. With this study we aimed to assess glucose, glycemic gap (GlyG) and insulin secretion/sensitivity measures in patients with Covid-19. Materials and Methods: We studied, upon admission, 157 patients with Covid-19 (84: in wards and 73: in intensive care units; ICU); 135 had no history of diabetes. We measured blood glucose upon admission as well as glycated hemoglobin (A1c), plasma insulin and C-peptide. We calculated the GlyG and the Homeostasis Model Assessment 2 (HOMA2) estimates of steady state beta cell function (HOMA2%B) and insulin sensitivity (HOMA2%S). Statistical assessment was done with analysis or the Kruskal-Wallis test. Results: Compared to patients in the wards without diabetes, patients with diabetes in the wards, as well as patients in the ICU (without or with diabetes) had higher admission glycemia. The GlyG was significantly higher in patients without diabetes in the ICU compared to patients without diabetes in the wards, while HOMA2%B based on glucose and insulin was significantly higher in the ICU patients compared to patients in the wards. Of all the parameters, HOMA2%S based on C-peptide/glucose was higher in survivors (n = 133). Conclusions: In our series of patients with Covid-19, a substantial number of patients with and without diabetes had admission hyperglycemia and those who were critically ill may have had compromised insulin secretion and lowered sensitivity to insulin. These findings lend credence to reports of association between Covid-19 and hyperglycemia/secondary diabetes.


Author(s):  
J Peter Ashby ◽  
Brian M Frier

Pancreatic beta-cell function is usually assessed by the measurement of plasma insulin concentration in various clinical situations. However, the advent of an assay for the measurement of connecting-peptide (C-peptide) concentration in plasma has provided a further method for the assessment of the secretory capacity of the pancreatic beta cell in clinical disorders, particularly in the investigation of hypoglycaemia. The metabolism and immunoassay methodology of C-peptide are reviewed, and its application in clinical practice is outlined.


2008 ◽  
Vol 16 (S 1) ◽  
pp. 142-144 ◽  
Author(s):  
C. Snehalatha ◽  
V. Mohan ◽  
A. Ramachandran ◽  
R. Jayashree ◽  
M. Viswanathan

2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Bo Ahrén ◽  
Yuichiro Yamada ◽  
Yutaka Seino

Abstract To establish the contribution of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) for the incretin effect after oral glucose, studies were undertaken in female mice with genetic deletion of receptors for GIP and GLP-1 (double incretin receptor knockout [DIRKO] mice) and their wild-type (WT) counterparts. Insulin secretion was explored after oral glucose (doses ranging from 0 to 100 mg), after intravenous glucose (doses ranging from 0 to 0.75 g/kg), and after oral and intravenous glucose at matching circulating glucose. DIRKO mice had glucose intolerance after oral glucose challenges in association with impaired beta-cell function. Suprabasal area under the curve for C-peptide (AUCC-peptide) correlated linearly with suprabasal AUCglucose both in WT (r = 0.942, P = .017) and DIRKO mice (r = 0.972, P = .006). The slope of this regression was lower in DIRKO than in WT mice (0.012 ± 0.006 vs 0.031 ± 0.006 nmol C-peptide/mmol glucose, P = .042). In contrast, there was no difference in the insulin response to intravenous glucose between WT and DIRKO mice. Furthermore, oral and intravenous glucose administration at matching glucose levels showed that the augmentation of insulin secretion after oral glucose (the incretin effect) in WT mice (11.8 ± 2.3 nmol/L min) was entirely absent in DIRKO mice (3.3 ± 1.2 nmol/L min). We conclude that GIP and GLP-1 are required for normal glucose tolerance and beta-cell function after oral glucose in mice, that they are the sole incretin hormones after oral glucose at higher dose levels, and that they contribute by 65% to insulin secretion after oral glucose.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 486 ◽  
Author(s):  
Hana Kahleova ◽  
Andrea Tura ◽  
Marta Klementova ◽  
Lenka Thieme ◽  
Martin Haluzik ◽  
...  

Diminished postprandial secretion of incretins and insulin represents one of the key pathophysiological mechanisms behind type 2 diabetes (T2D). We tested the effects of two energy- and macronutrient-matched meals: A standard meat (M-meal) and a vegan (V-meal) on postprandial incretin and insulin secretion in participants with T2D. A randomized crossover design was used in 20 participants with T2D. Plasma concentrations of glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), amylin, and gastric inhibitory peptide (GIP) were determined at 0, 30, 60, 120, and 180 min. Beta-cell function was assessed with a mathematical model, using C-peptide deconvolution. Repeated-measures ANOVA was used for statistical analysis. Postprandial plasma glucose responses were similar after both test meals (p = 0.64). An increase in the stimulated secretion of insulin (by 30.5%; 95% CI 21.2 to 40.7%; p < 0.001), C-peptide (by 7.1%; 95% CI 4.1 to 9.9%; p < 0.001), and amylin (by 15.7%; 95% CI 11.8 to 19.7%; p < 0.001) was observed following consumption of the V-meal. An increase in stimulated secretion of GLP-1 (by 19.2%; 95% CI 12.4 to 26.7%; p < 0.001) and a decrease in GIP (by −9.4%; 95% CI −17.3 to −0.7%; p = 0.02) were observed after the V-meal. Several parameters of beta-cell function increased after the V-meal, particularly insulin secretion at a fixed glucose value 5 mmol/L, rate sensitivity, and the potentiation factor. Our results showed an increase in postprandial incretin and insulin secretion, after consumption of a V-meal, suggesting a therapeutic potential of plant-based meals for improving beta-cell function in T2D.


2015 ◽  
Vol 21 (1) ◽  
pp. 126-137 ◽  
Author(s):  
Sean M. Burns ◽  
Amedeo Vetere ◽  
Deepika Walpita ◽  
Vlado Dančík ◽  
Carol Khodier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document