Effects of CC-chemokine receptor 5 on ROCK2 and P-MLC2 expression after focal cerebral ischaemia–reperfusion injury in rats

Brain Injury ◽  
2016 ◽  
Vol 30 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Laisi Li ◽  
Dongyi Zhi ◽  
Yanling Shen ◽  
Kaixiang Liu ◽  
Hao Li ◽  
...  
2013 ◽  
Vol 25 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Pei-Lei Zhang ◽  
Hai-Tao Lu ◽  
Jun-Gong Zhao ◽  
Ming-Hua Li

ObjectiveTo investigate the effect of dl-3n-butylphthalide (NBP) on the protection of cerebral tissue and possible mechanism on ischaemia-reperfusion injury, and to find out whether NBP therapy can extend the reperfusion window in an experimental stroke model in rats.MethodsSeventy-two Sprague-Dawley rats were randomly divided into sham operation, ischaemia-reperfusion and ischaemia-reperfusion with NBP groups. Focal cerebral ischaemia was induced using the modified intraluminal thread method and maintained for 2, 3 or 4 h. The ischaemia-reperfusion group received reperfusion immediately after ischaemia-reperfusion. The NBP group received intraperitoneal injection of NBP immediately after ischaemia, followed by reperfusion. The sham operation group received only injection of physiological saline. The cerebral infarction volume and neurological deficit were analysed, and vascular endothelial growth factor (VEGF) expression in brain tissues was visualised by immunohistochemistry.ResultsNBP treatment caused a significant decrease in both infarction volume and neurological deficit compared with the ischaemia-reperfusion group at corresponding time points in each (p < 0.05). In the NBP group, the infarction volume and neurological deficit did not change with different ischaemia times. The expression of VEGF was significantly decreased in the ischaemia-reperfusion group compared with the sham group (p < 0.01), while this change was partly prevented in the NBP group (p < 0.01). The expression of VEGF in brain tissue in both the NBP and ischaemia-reperfusion groups gradually decreased when the ischaemic period was prolonged.ConclusionNBP treatment has a protective effect against cerebral ischaemia; this possible mechanism maybe related to the VEGF expression and may extend the reperfusion window for subsequent salvage of cerebral ischaemia by reperfusion.


Hepatology ◽  
2003 ◽  
Vol 38 ◽  
pp. 736-736
Author(s):  
A FLOREANI ◽  
A TOMMASI ◽  
A BARAGIOTTA ◽  
V BALDO ◽  
G TOSITTI ◽  
...  

2012 ◽  
Vol 286 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Figen Gurdol ◽  
Leman M. Yurdum ◽  
Ummühan Ozturk ◽  
Elif Isbilen ◽  
Bedia Cakmakoglu

2020 ◽  
Author(s):  
Polina Isaikina ◽  
Ching-Ju Tsai ◽  
Nikolaus Dietz ◽  
Filip Pamula ◽  
Anne Grahl ◽  
...  

AbstractThe human CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor (GPCR) that plays a major role in inflammation and is involved in the pathology of cancer, HIV, and COVID-19. Despite its significance as a drug target, the activation mechanism of CCR5, i.e. how chemokine agonists transduce the activation signal through the receptor, is yet unknown. Here, we report the cryo-EM structure of wild-type CCR5 in an active conformation bound to the chemokine super-agonist [6P4]CCL5 and the heterotrimeric Gi protein. The structure provides the rationale for the sequence-activity relation of agonist and antagonist chemokines. The N-terminus of agonist chemokines pushes onto an aromatic connector that transmits activation to the canonical GPCR microswitch network. This activation mechanism differs significantly from other CC chemokine receptors that bind shorter chemokines in a shallow binding mode and have unique sequence signatures and a specialized activation mechanism.One-sentence summaryThe structure of CCR5 in complex with the chemokine agonist [6P4]CCL5 and the heterotrimeric Gi protein reveals its activation mechanism


Sign in / Sign up

Export Citation Format

Share Document