Cytotoxicity of a Recombinant Diphtheria Toxin-Granulocyte Colony-Stimulating Factor Fusion Protein on Human Leukemic Blast Cells

1993 ◽  
Vol 11 (3-4) ◽  
pp. 249-262 ◽  
Author(s):  
D. E. Chadwick ◽  
D. P. Williams ◽  
Y. Niho ◽  
J. R. Murphy ◽  
M. D. Minden
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2173-2173
Author(s):  
Lin Wang ◽  
Jia Xue ◽  
Seth J. Corey ◽  
Lisa J. Robinson

Abstract Granulocyte colony stimulating factor (G-CSF) is the major cytokine involved in neutrophil production. G-CSF has pleiotropic effects on myeloid cells, initially stimulating proliferation but later promoting differentiation. The specific signaling pathways that mediate the diverse effects of G-CSF remain incompletely understood. Recently, the scaffolding molecule Grb2-associated binder protein 2 (Gab2) was shown to play an important role in G-CSF induced myeloid differentiation (Zhu et al. Blood 2004). Ligand stimulation of the G-CSF receptor results in the rapid phosphorylation of Gab2, but the identity of the responsible kinases and the molecular events dependent on Gab2 phosphorylation remain unclear. Because Janus kinases (Jaks) play a central role in G-CSF signaling, we investigated the involvement of Jaks in G-CSF-stimulated Gab2 phosphorylation using the hematologic DT40 cell line stably transduced with the human G-CSF receptor (DT40GR). Antisense Jak1 and Jak2 constructs expressed in DT40GR cells each produced a marked reduction in their target Jak protein, but only antisense Jak2 reduced G-CSF-stimulated Gab2 phosphorylation. To determine whether Gab2 phosphorylation required Jak2 kinase activity, dominant negative Jak2 mutants lacking catalytic activity were expressed in the DT40GR cells. Expression of dominant negative Jak2 inhibited Gab2 phosphorylation in response to G-CSF. Similarly, treatment with the Jak2-selective kinase inhibitor AG490 markedly reduced G-CSF-dependent Gab2 phosphorylation. Co-immunoprecipitation studies further demonstrated a G-CSF- and Gab2 phosphorylation-dependent association of Jak2 with Gab2 in vivo, which was detectable by 30 seconds after G-CSF stimulation. To determine whether Gab2 was a direct substrate of Jak2, we performed in vitro phosphorylation studies using Gab2-GST fusion protein substrates. Jak2 immunoprecipitated from G-CSF-stimulated cells, but not from control cells, phosphorylated the Gab2 fusion protein. To identify potential Jak2 tyrosine phosphorylation sites in Gab2, we used site-directed mutagenesis to produce three Gab2 tyrosine mutants. Tyrosines 409, 452, and 476 were each replaced by phenylalanine (Y409F, Y452F, and Y476F). The Y452F and Y476F mutations of Gab2 each inhibited G-CSF-stimulated Jak2-dependent phosphorylation of Gab2, both in stably-transfected DT40GR cells and in transiently-transfected 293 cells also transduced with the G-CSF receptor. In contrast, G-CSF-stimulated Gab2 phosphorylation appeared unaffected by the Y409F mutation. We also evaluated downstream events in G-CSF signaling in cells expressing these Gab2 tyrosine- mutants. Akt and Erk phosphorylation following G-CSF stimulation was inhibited by both the Y452F and Y476F Gab2 mutations, but was unaffected by the Y409F mutation. These results suggest that Jak2 may mediate G-CSF differentiation signals through Stat-independent mechanisms.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 35-41
Author(s):  
I Murohashi ◽  
S Tohda ◽  
T Suzuki ◽  
K Nagata ◽  
Y Yamashita ◽  
...  

Autocrine growth mechanisms of leukemic blast progenitors in acute myeloblastic leukemia (AML) were investigated. Colony formation of leukemic blast progenitors was observed in 14 of 14 patients tested when purified blast cell fraction depleted of both T cells and monocytes was plated in methylcellulose without any colony-stimulating factor (CSF). However, there existed a minimal cell density required to initiate blast progenitor growth with marked patient-to-patient variation. To clarify the role of cell density on the spontaneous growth of blast progenitors, we tested whether leukemic cells produced and secreted some stimulatory humoral factor(s). Production of colony- stimulating activity (CSA) by blast cells was observed in 17 of 18 patients tested. Following further depletion of monocytes, the CSA levels decreased markedly in 14 patients, indicating that blast cells with monocytoid differentiation were responsible for CSA production. We also confirmed granulocyte colony-stimulating factor (G-CSF) and/or granulocyte macrophage-colony-stimulating factor (GM-CSF) production by leukemic blasts using specific immunologic assays. When leukemic cells were divided into nonadherent nonphagocytic cell fraction and adherent cell fraction, only nonadherent nonphagocytic cells showed clonogenecity and adherent blast cells lacked the colony-forming capacity. The results indicate that there are at least two blast cell subpopulations in AML: one is proliferating subpopulation with self- renewal capacity and the other is supporting subpopulation with functions such as CSF production. The quite intimate relationship between these two blast cell subpopulations in AML may play an important role on the growth of leukemic blast progenitors in vitro.


Blood ◽  
1989 ◽  
Vol 74 (8) ◽  
pp. 2668-2673 ◽  
Author(s):  
LM Budel ◽  
IP Touw ◽  
R Delwel ◽  
B Lowenberg

Abstract The binding of granulocyte colony-stimulating factor (G-CSF) to normal and human acute myeloid leukemia (AML) cells was investigated with radiolabeled recombinant human G-CSF (rhG-CSF). In all 14 cases of primary AML specific receptors for G-CSF were demonstrated on purified blast cells. The average numbers of G-CSF receptors ranged from very low to 428 receptors per cell (mean). Normal granulocytes showed G-CSF binding sites on their surface at higher densities (703 to 1,296 sites per cell). G-CSF receptors appeared to be of a single affinity type with a dissociation constant (kd) ranging between 214 and 378 pmol/L for AML blasts and 405 to 648 pmol/L for granulocytes. In 12 of 14 cases, including those with relatively low specific binding, G-CSF was a potent inducer of DNA synthesis of blasts in vitro; therefore, apparently relatively few receptors are required to permit activation of AML cell growth. However, in two cases cell cycling was not activated in response to G-CSF despite G-CSF receptor availability. The results show that G-CSF receptors of high affinity are frequently expressed on the blasts of human AML, but their presence may not be a strict indicator of the proliferative responsiveness of the cells to G- CSF.


2004 ◽  
Vol 32 (5) ◽  
pp. 441-449 ◽  
Author(s):  
George N Cox ◽  
Darin J Smith ◽  
Sharon J Carlson ◽  
Alison M Bendele ◽  
Elizabeth A Chlipala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document