scholarly journals Comparison between FPGA Implementation of Discrete Wavelet Transform, Dual Tree Complex Wavelet Transform and Double Density Dual Tree Complex Wavelet Transform in Verilog HDL

2018 ◽  
Vol Volume-2 (Issue-4) ◽  
pp. 1153-1156
Author(s):  
Richa Srivastava ◽  
Dr. Ravi Mishra ◽  
Author(s):  
Manish Khare ◽  
Rajneesh Kumar Srivastava ◽  
Ashish Khare

Many methods for computer vision applications have been developed using wavelet theory. Almost all of them are based on real-valued discrete wavelet transform. This chapter introduces two computer vision applications, namely moving object segmentation and moving shadow detection and removal, using Daubechies complex wavelet transform. Daubechies complex wavelet transform has advantages over discrete wavelet transform as it is approximately shift-invariant, has a better edge detection, and provides true phase information. Results after applying Daubechies complex wavelet transform on these two applications demonstrate that Daubechies complex wavelet transform-based methods provide better results than other real-valued wavelet transform-based methods, and it also demonstrates that Daubechies complex wavelet transform has the potential to be applied to other computer vision applications.


2018 ◽  
Vol 5 (9) ◽  
pp. 180436 ◽  
Author(s):  
Khuram Naveed ◽  
Bisma Shaukat ◽  
Naveed ur Rehman

A novel signal denoising method is proposed whereby goodness-of-fit (GOF) test in combination with a majority classifications-based neighbourhood filtering is employed on complex wavelet coefficients obtained by applying dual tree complex wavelet transform (DT-CWT) on a noisy signal. The DT-CWT has proven to be a better tool for signal denoising as compared to the conventional discrete wavelet transform (DWT) owing to its approximate translation invariance. The proposed framework exploits statistical neighbourhood dependencies by performing the GOF test locally on the DT-CWT coefficients for their preliminary classification/detection as signal or noise. Next, a deterministic neighbourhood filtering approach based on majority noise classifications is employed to detect false classification of signal coefficients as noise (via the GOF test) which are subsequently restored. The proposed method shows competitive performance against the state of the art in signal denoising.


Sign in / Sign up

Export Citation Format

Share Document