scholarly journals The transcription elongation factor A like 7 (TCEAL7) is differentially expressed in high-grade serous ovarian cancers and its expression associates with patient survival.

2020 ◽  
Author(s):  
Shahan Mamoor

Ovarian cancer is the most lethal gynecologic cancer (1). We sought to identify genes associated with high-grade serous ovarian cancer (HGSC) by comparing global gene expression profiles of normal ovary with that of primary tumors from women diagnosed with HGSC using published microarray data (2, 3). We found significant differential expression of the gene encoding the transcription elongation factor A like 7 (TCEAL7) in high-grade serous ovarian tumors, and TCEAL7 expression associated with progression-free survival in patients with HGSC.

2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published and public microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding SLIT and NTRK-like family member 3, SLITRK3, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. SLITRK3 expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. SLITRK3 expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of SLITRK3 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. SLITRK3 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding sarcospan, SSPN, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. SSPN expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. SSPN expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of SSPN is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. SSPN may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2020 ◽  
Author(s):  
Shahan Mamoor

Ovarian cancer is the most lethal gynecologic cancer (1). We sought to identify genes associated with high-grade serous ovarian cancer (HGSC) by comparing global gene expression profiles of normal ovary with that of primary tumors from women diagnosed with HGSC using published microarray data (2, 3). We previously reported differential expression of the PAR-bZIP transcription factor HLF in HGSC (4). Here, we report significant differential expression of a second PAR-bZIP transcription factor, thyrotroph embryonic factor (TEF) (5) in high-grade serous ovarian tumors.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding phosphodiesterase 5A, PDE5A, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. PDE5A expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. PDE5A expression correlated with progression-free survival in patients with p53 mutant ovarian cancer. These data indicate that expression of PDE5A is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. PDE5A may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding trophinin associated protein, TROAP, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. TROAP expression was significantly higher in high-grade serous ovarian tumors relative to normal fallopian tube. TROAP expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of TROAP is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. TROAP may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding hematopoietic SH2 domain containing, HSH2D, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. HSH2D expression was significantly higher in high-grade serous ovarian tumors relative to normal fallopian tube. HSH2D expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of HSH2D is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. HSH2D may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding receptor activity modifying protein 1, RAMP1, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. RAMP1 expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. RAMP1 expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of RAMP1 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. RAMP1 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2020 ◽  
Author(s):  
Shahan Mamoor

Ovarian cancer is the most lethal gynecologic cancer (1). We sought to identify genes associated with high-grade serous ovarian cancer (HGSC) by comparing global gene expression profiles of normal ovary with that of primary tumors from women diagnosed with HGSC using published microarray data (2, 3). Perturbed expression of TCEAL7 has previously been reported in epithelial ovarian cancers (4). Here we find significant differential expression of multiple members of the TCEAL gene family in high-grade serous ovarian tumors.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published and public microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding dystrophin, DMD, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. DMD expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. DMD expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of DMD is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. DMD may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2020 ◽  
Author(s):  
Shahan Mamoor

Ovarian cancer is the most lethal gynecologic cancer (1). We sought to identify genes associated with high-grade serous ovarian cancer (HGSC) by comparing global gene expression profiles of normal ovary with that of primary tumors from women diagnosed with HGSC using published microarray data (2, 3). We found significant differential expression of the gene encoding ASPM in high-grade serous ovarian tumors.


Sign in / Sign up

Export Citation Format

Share Document